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Abstract

Text and Numerical Input on Mobile and Wearable Devices

by

Yuan Ren

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced

Assistant Professor Ahmed Sabbir Arif, Chair

Text and numeric input and editing are prevalent in our daily digital interactions. Although text
entry has been meticulously investigated by the human-computer interaction (HCI) community, nu-
meric input and editing have not been as thoroughly examined. Consequently, the methods employed
on mobile and wearable devices, such as smartwatches, are inefficient compared to their desktop
counterparts. This inefficiency is primarily due to the smaller screen real estate of these devices,
which cannot display all relevant information, the absence of haptic feedback provided by physical
keyboards and keypads, and an excessive reliance on precise target selection, which is difficult on
smaller screens. This dissertation investigates, designs, and evaluates novel methods for text and
numeric input and editing for mobile and wearable devices by leveraging the existing capabilities of
smartphones and smartwatches. The first part of this dissertation proposes three new numeric input
and editing methods for smartwatches based on gestures, tilting, and force. The proposed methods
enable users to actively switch between slow-and-steady and fast-and-continuous increments and
decrements of numeric values during the input process. Results reveal that the gesture-based method
yields a significantly faster input rate and is perceived as faster, more accurate, and the least mentally
and physically demanding compared to the other methods. The second part explores the possibility
of using a force-based approach to target selection on smartwatches and its use in character entry.
The initial study identifies the most comfortable range of force on smartwatches. The subsequent
study compares the performance of tap and force-tap in a Fitts’ Law setting. Results revealed that
force-tap is significantly better at selecting smaller targets, while tap outperforms force-tap for larger
targets. We then develop two new force-based keyboards to demonstrate the feasibility of force input
in practical scenarios. These single-row alphabetical keyboards enable character-level text entry by
performing slides and varying contact force. In a user study, these keyboards yield about 4 wpm with
about a 2% error rate, demonstrating the viability of force input on smaller screens. The third part
of the dissertation presents GeShort, a novel method for one-handed text editing and formatting on
mobile devices. It uses simple rules to facilitate direct cursor positioning, gestural shortcuts inspired
by keyboard hotkeys for editing and formatting, and a floating clipboard to enable delayed, repeated,
and block editing. A comparison between GeShort and the default Google keyboard reveals that
users perform editing and formatting tasks about 11% and 22% faster, respectively, with GeShort,
achieved by significantly reducing selection time by 11% and action time by 17%. A second study
comparing the clipboard features of the two methods revealed that users perform advanced editing
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tasks 34% faster with GeShort. The findings presented in this dissertation illustrate that numeric
and character entry and editing can be significantly improved in terms of speed, accuracy, and user
preference. This is achieved by employing careful interface and interaction design, utilizing simple
rules, and applying language models, all while making use of the existing capabilities of mobile and
wearable devices. Importantly, this enhancement does not require the addition of extra sensors, new
hardware, or the computational power necessary for complex learning models.
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Chapter 1

Introduction

In recent years, smartphones and smartwatches have evolved into staple consumer products [51, 91].
With their enhanced computational power, usability, and accessibility, these devices empower users
to access information and input text and numbers without the need for a desktop computer. A recent
survey of smartphone users revealed that approximately 75% use their devices for chatting and mes-
saging, while nearly 70% engage in email communication [37]. Accessing online banking emerges
as the third most popular activity among global respondents, closely following the aforementioned
uses. Importantly, these activities necessitate the entering and editing of text and numbers. An-
other survey reported that smartwatch owners primarily use their devices for texts and notifications,
activity tracking, and emails, with usage rates of 54%, 45%, and 25%, respectively [99]. Notably,
approximately one-in-five U.S. adults (21%) regularly wear a smartwatch or a fitness tracker [133] to
enter numerical data related to fitness activities, such as workout duration, distance, calories burned,
or heart rate monitoring. Consequently, many of these activities also require the input and editing
of text and numeric data1. Beyond these activities, text and numeric entry and editing also serve
additional purposes, such as taking quick notes, entering passwords and access codes, making email
address or phone number entries, scheduling appointments, or setting reminders. Therefore, the abil-
ity to effectively and effortlessly enter and edit characters2 can enhance productivity by facilitating
greater access to productivity tools and can significantly simplify our daily routines.

Although text entry has been extensively studied by the human-computer interaction (HCI) com-
munity, the area of numeric input and editing has not received as much attention. As a result, the
methods used on mobile and wearable devices, such as smartwatches, are less efficient than those on
desktop computers. This inefficiency is mainly due to the limited screen size of these devices, which
restricts the display of all pertinent information, the lack of haptic feedback that physical keyboards
and keypads offer, and a heavy dependence on precise target selection, which becomes challenging
on smaller screens. Indeed, the primary method of text input for mobile and wearable devices is
the virtual Qwerty keyboard (Fig. 1.1). This is a keyboard that replicates the layout of traditional
physical keyboards on touchscreen devices, allowing for text input through the tapping of miniature
virtual keys representing letters, numbers, and symbols. However, the Qwerty layout has its disad-
vantages, originating from its initial design intended to prevent jamming in mechanical typewriters,

1In this dissertation, we define “number editing” as instances in which an existing number is modified or a number is
selected from a specified range.

2In this dissertation, the term “characters” encompasses all printable entities, including letters, numbers, and symbols.
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(a) Virtual Keyboard (b) Virtual Keyboard with Numbers (c) Number Pad

Figure 1.1: Compact virtual Qwerty keyboards and numeric entry layouts on smartphones and smart-
watches.

rather than to enhance typing speed or ergonomic comfort for users. Using this layout on smaller
touchscreens often leads to slower typing speeds and increased finger strain due to the suboptimal
key arrangement [14]. Additionally, as device screen sizes become smaller, ranging from laptops
and tablets to smartphones and smartwatches, the keys themselves are reduced in size. This size
reduction complicates selection and elevates error rates [10]. The Qwerty keyboard also facilitates
the input and editing of numbers, but requires users to switch to a different layout to access a row of
numbers at the top. In certain situations, such as when input is limited to numbers (e.g., entering a
PIN code, phone number, or zip code), the keyboard interface is substituted with number pads and
symbol entry layouts with different key arrangements. This necessitates learning multiple layouts
and diverting focus from the primary task to switching between layouts. Thus, text and numeric entry
and editing remain challenging on smaller touchscreen devices, like smartphones and smartwatches.

Figure 1.2: Number picker on a smartphone (left) and a smartwatch (right).

Number pickers offer an alternative method for entering numbers (Fig. 1.2). Unlike virtual key-
boards that require users to input digits individually, number pickers present a default value and
permit users to select a new number from a list or alter the default via a dual-segment control. Users
can increase the value by swiping up or decrease it by swiping down, with continuous adjustment
necessitating repeated swipes. However, number pickers fall short when dealing with large numeric
ranges. Scrolling through long sequences to locate a specific value can be tedious, leading to pro-
longed selection times, increased fatigue, and potential frustration. Furthermore, on devices with
small screens, such as smartwatches, the limited display area increases the challenge of navigat-
ing through vast number lists. Additionally, number pickers frequently require the use of the entire
screen, thereby hindering or complicating the process of inline editing.
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Figure 1.3: Cursor positioning, text selection, and editing features on an iOS-based device [53].

Like numbers, text enditing and formatting is also difficult on smaller screens. The process of
text editing and formatting on mobile devices typically involve cursor positioning, activating “edit
mode” via a long tap to display an edit toolbar and selection handles, adjusting the selection, and
choosing a task from the toolbar (Fig. 1.3). For formatting tasks often hidden in a secondary menu,
further navigation is required. The “fat-finger problem” complicates precise cursor placement, lead-
ing to errors and correction delays [132, 21]. The necessity for a dwell threshold and navigating
multiple menus adds complexity and time, especially when using the device with one hand, a com-
mon scenario for mobile users under various circumstances [8]. Existing methods for mobile text
editing lack support for efficient delayed, repeated, and batch editing, usually requiring a cumber-
some sequence of actions for each task. The default Google keyboard, Gboard, has introduced a
clipboard for some improvement in managing text snippets for later use, nevertheless accessing and
utilizing this feature remains cumbersome and inefficient.

In summary, devices with smaller screens face the following challenges in character entry and
editing.

• Small key size. Virtual Qwerty keyboards on these devices often have small keys, raising the
likelihood of accidental taps or misinputs, a contrast to the more reliable physical keyboards.

• Screen occlusion. The issue of users’ fingers obscuring the screen while typing on virtual key-
boards limits visual feedback. This problem exacerbates as the target size decreases, leading
to frequent errors and user frustration.

• Lack of physical feedback. The absence of tactile feedback on touchscreen devices increases
user uncertainty during typing, as they lack the physical confirmation of their inputs. This
absence necessitates constant visual monitoring to ensure accuracy.

• Limited screen size. The significantly smaller screens of these devices, especially smart-
watches, limit the range of tasks that can be performed comfortably. Complex actions such as
extensive swipes, multi-point panning, or intricate gestures are particularly challenging.

• Reduced dexterity. The necessity of using two hands for certain tasks adds to the difficulty,
as the hand wearing the device cannot assist in input actions. This limitation forces users to
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operate the device solely with one hand, usually leading to decreased precision, slower input
speeds, and an increased incidence of errors.

This necessitates the development of faster, more accurate, and more reliable techniques for
character input and editing by leveraging the existing capabilities of smartphones and smartwatches
as alternative input modalities.

1.1 Contributions
This work investigates, designs, and evaluates innovative methods for text and numeric input and
editing on mobile and wearable devices, utilizing the existing capabilities of smartphones and smart-
watches.

Initially, we address the challenge of number entry on smartwatches, where selecting small tar-
gets is problematic due to the fat-finger problem. Given that text entry on smartwatches represents
an extreme case of target selection, requiring repetitive selection of miniature keys, text entry is par-
ticularly difficult. Traditional methods often involve multi-step processes for character input, further
complicating text entry. Notably, number picking is a frequent input task on smartwatches. Existing
devices like the Apple Watch and Android Wear use an input stepper for number picking, demanding
users spin a wheel to input and edit numbers, which can be distracting and fatiguing. We propose
three innovative methods for number picking on smartwatches: directional swipes, wrist twisting,
and contact force variation. Our results indicate that the swipe-based method, in particular, offers a
significantly faster input rate in both stationary and mobile contexts, and during both individual and
inline number editing, being perceived as fast, accurate, and less demanding mentally and physically.

Next, we explore target selection on smartwatches, especially for small targets, using a force-
based approach. After determining the most comfortable force range for smartwatch interaction, we
conducted a 1D Fitts’ law study comparing tap and force-tap performance. Our findings suggest
that force-tap excels at selecting smaller targets, while tap is more efficient for larger targets. This
research led to the development of two new force-based keyboards, showcasing the practicality of
force inputs on smaller screens.

Lastly, we focus on text editing and formatting on mobile devices, a critical need given their
widespread use. The tasks of precise cursor positioning and text selection are hindered by the fat-
finger issue and screen occlusion, often leading to errors and requiring additional correction time. We
propose a novel method for one-handed text editing and formatting on mobile devices, introducing
gestural shortcuts. This system uses straightforward rules for cursor placement, gestural shortcuts
based on keyboard hotkeys for editing and formatting, and a floating clipboard for complex editing
tasks. Our research shows that this method significantly outperforms standard techniques, reducing
both selection and action times.

1.2 Outline
The dissertation is organized as follows. Chapter 2 introduces three innovative methods for number
input on smartwatches, achieved through directional swipes, wrist twisting, and varying screen con-
tact force. These methods contrast with the standard number picker by offering users the ability to
switch between slow-and-steady and fast-and-continuous adjustments. We assessed these methods
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through two user studies: the first comparing them to the conventional input stepper in both station-
ary and mobile settings, and the second evaluating their performance in handling individual numbers
and numbers within textual contexts. Chapter 3 explores the use of a force-based approach for select-
ing targets on smartwatches. It establishes the most comfortable force range for users and conducts
a 1D Fitts’ law study to compare tap and force-tap performance. This chapter also details the design
and testing of two new force-based text entry techniques, illustrating the feasibility of this approach.
Chapter 4 details a novel strategy for one-handed text editing and formatting on mobile devices, em-
ploying straightforward rules for direct cursor positioning, gestural shortcuts modeled after keyboard
hotkeys, and a floating clipboard for complex editing tasks. It presents a comparison between this
method and the default Google keyboard across various editing and formatting activities. Chapter 5
concludes the dissertation, outlining future research prospects and possible expansions of the work
presented.
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Chapter 2

Number Entry & Editing on
Smartwatches

2.1 Introduction
Smartwatches are becoming increasingly popular among mobile users. A recent survey reported that
roughly one-in-five U.S. adults (21%) regularly wear a smartwatch or a fitness tracker [133]. Yet,
interaction with these devices is mostly limited to receiving notifications on emails, text messages,
and social media activities [33]. This is primarily due to the smaller screen sizes of smartwatches,
which limits the types of actions users can perform on these devices. Text entry on these devices
is particularly difficult as most existing text entry methods use miniature keys that are difficult to
select, causing frequent errors [14]. Some methods also use multi-step approaches, where users
have to perform a sequence of actions to input one character. Due to these challenges in text entry,
number picking is arguably the most frequent input task performed on smartwatches. For illustrative

Figure 2.1: The four number pickers investigated in this work, from left: input stepper (the default
number picker on most smartwatches), swipe (in this figure, the user is swiping down to decrease
a value), tilt (in this figure, the user is tilting up to increase a value), and force (in this figure, the
user is variating contact force to change a value). Unlike the default input stepper, the new methods
do not display numeric values in full-screen when selected, instead display a magnifier window to
display the value changing (see the last image).
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purposes, current Apple smartwatches come with 40 pre-installed apps1, of which four partially
support alphanumeric text and emoticon entry, eight support number entry using a number picker,
and the remaining 28 are only for acquiring and viewing information.

Unlike traditional input methods, with which users enter one digit of a number at a time (such
as a virtual keyboard), number pickers display a default value on the screen and enable users to
pick a different number either from a list or by increasing or decreasing the default value using a
two-segment control. The default number picker on most smartwatches is “input stepper”. It uses
a spinning number wheel metaphor, where flicking up on the screen spins the wheel to increase the
value and spinning the wheel by a down flick decreases the value. Faster flicks spin the wheel faster
and vice versa. Once flicked, the wheel keeps on spinning for some time, gradually slowing down
to a full stop. Thus, repeated flicks are needed for continuous spinning of the wheel. Input stepper
is also the default number picker on most smartphones. However, on smartphones, this method is
used by a select number of apps (i.e., the clock) since the dominant method for entering numeric
and other characters on these devices is virtual keyboards, while on smartwatches it is used almost
exclusively to enter numbers. Section 2.3.1 describes this method. There are several limitations of
this method. First, it does not usually enable editing inline values (numbers embedded in text, e.g.,
“12:30” in “let’s meet at 12:30 pm”). Even when it does, it displays the spinner in full-screen,
forcing users to take their attention away from the details on the screen that may include important
details about the target number (e.g., available time slots for a meeting). Second, this method is
impractical when the difference between the default and the intended values is very large (e.g., when
changing “$50 daily” to “$1,500 monthly”) as it requires repetitive flicks, which can be physically
and mentally challenging. Yet, to the best of our knowledge, no prior works studied number pickers
on smartwatches or proposed alternatives to the default number picker.

In this paper, we develop three new number pickers in a rigorous design process. We then com-
pare the performance of these methods with the default method in two empirical studies: one com-
paring their performance in stationary and mobile settings and another with individual and inline
numeric values. The remainder of this chapter is organized as follows. First, we review the existing
works in the area. We then describe the default number picker and introduce the proposed number
pickers. We discuss the design considerations for the new methods. We then present the findings
of two user studies comparing the four number pickers. Finally, we conclude by reflecting on future
extensions of the work.

2.2 Related Work
Numerous works have explored swipe-based, tilt-based, and force-based input and interaction meth-
ods for larger touchscreen-based devices like interactive tabletops and walls [75, 108], tablets [135,
59], and smartphones [112, 127, 5, 39, 128, 36, 47, 124, 46]. However, these alternative interaction
methods have not been well explored in the context of smartwatches. Interaction with smartwatches
is fundamentally different from these devices as not only they are smaller in size but also have dif-
ferent holding and usage patterns. Unlike other touchscreen-based devices, smartwatches are worn
on the wrist, which limits its interaction space as users cannot use the fingers of the watch-hand to
interact with the device.

1Apps on Apple Watch, https://support.apple.com/en-gb/guide/watch/apdf1ebf8704/watchos

https://support.apple.com/en-gb/guide/watch/apdf1ebf8704/watchos
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There has been an increased interest in text entry methods for smartwatches. Majority of these
methods are miniature versions of the standard Qwerty layout that enable users to increase the size of
the keys by either tapping or flicking on the screen [110, 41, 76]. There are also alternative miniature
layouts that map the English alphabet to a fewer number of keys than Qwerty, then disambiguate the
input using a language model [67, 85]. Two recent methods, WatchWriter [64] and SwipeRing [115],
enable users to enter text by connecting the keys or the zones containing the letters of the intended
word on the screen. Another method, WrisText [63], enables connecting the zones by whirling the
wrist of the watch-hand in joystick-like motions. However, these methods use language models to
disambiguate the input, and do not offer effective mechanisms for entering numeric values. Arif and
Mazalek [14] provide a comprehensive review of the existing text entry methods for smartwatches.

Some have used smartwatches to control other systems. Duet enables controlling a smartphone
using the spatial configuration of a smartwatch [42]. Users can tap and swipe on the smartwatch
and perform wrist gestures to interact with a smartphone. Likewise, MultiFi lets users use extended
widgets on a smartwatch in augmented/mixed reality, where users select a menu item by either tap-
ping on the screen or pointing at the item. Some have also used smartwatches as active tangible in
tangible-tabletop systems [65]. Actible [57], for example, augments a smartwatch with custom hard-
ware to enable an expanded set of tangible interactions on interactive tabletops, including shaking,
tilting, stacking, neighboring, and on-screen gestures [22, 50, 103]. These methods, however, were
designed keeping interaction with other systems in mind, thus are not suitable for interacting with
the smartwatches. Besides, the smartwatch-based active tangibles are usually used on a tabletop,
not worn on the wrist. A different line of research exploits the accelerometer and gyroscope sensors
of smartwatches [138, 139] or external sensors (e.g., infrared sensors [84, 87] and chest-mounted
camera [98]) to track hand and finger movements. These works, however, are outside the scope of
this research.

A few works have also explored tilt-based and force-based interaction methods on smartwatches.
To the best of our knowledge, no prior work developed or compared swipe-based, tilt-based, and

force-based interaction methods on a smartwatch, especially in the context of number entry.

Table 2.1: Actions associated with the four number pickers.

Method Increment Decrement Acceleration
Rate

Continuous
Spinning

Input Stepper Flick up Flick down Pace of flick Repetitive flicks
Swipe-Based Swipe up Swipe down Length of swipe Swipe and hold
Tilt-Based Tilt the wrist up Tilt the wrist down Angle of tilt Tilt and hold
Force-Based Increase contact force Decrease contact force Level of force Hold contact force

2.3 The Four Number Pickers
This section presents the default input stepper and the new swipe-based, tilt-based, and force-based
number pickers. The design of the new methods were refined in iterative design steps. Table 2.1
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summarizes the functionality of the four methods. In addition, these methods share the following
behaviors.

• Selection. All methods enable selecting a numeric value for increment or decrement by tap-
ping on it. When the selected value is embedded in text (inline values), the input stepper
displays a full-screen virtual number wheel containing all legal values, which is the default
behavior on most smartwatches. The swipe-based, tilt-based, and force-based methods, in
contrast, do not display the number wheel in full-screen, instead change the value directly in
the text. For conjoint values (i.e., multiple numbers connected with infixes), the input stepper
displays one number wheel per segment. For example, for the time value “12:30:44”, it dis-
plays three wheels, one for each segment, which is the default behavior on most smartwatches.
With the new methods, however, users individually tap on the three parts of the value to change
the respective parts.

• Continuous Spinning. The new methods enable continuous spinning of the number wheel
with a single action for faster increment and decrement when the difference between the current
and the intended value is large (e.g., changing “110” to “250”). The default input stepper does
not provide the support for this, rather requires users to repeatedly flick on the screen for
continuous spinning of the wheel. This feature is further discussed in Sections 2.3.1.

• Auditory Feedback. All four methods provide auditory feedback on spinning the number
wheel (a spinning wheel sound, like the default Apple iOS input stepper).

• Visual Feedback. Since the new methods do not switch to a full-screen mode when users
select a numeric value embedded in text, they provide additional visual feedback to assure that
users can see the value changing when their finger occludes the embedded value. Particularly,
these methods display a magnifier window further from the finger (Fig. 2.1).

For the design and development, we simulated an Apple Watch 5 on an Apple iPhone X, where
only the smartwatch display was active (Section 2.4.1 provides further details). We could not use
an actual smartwatch since current smartwatches do not provide the support for continuous force
detection. Apple Watch 5 includes a force sensor that can only “distinguish between a light tap and
a deep press” [55]. We optimized all methods for the simulated smartwatch for a fair comparison
between them. It is relatively common to use smartphones or tablets to study interactions with
smartwatches due to technological limitations of current smartwatches (e.g., [41, 110, 94]).

2.3.1 Input Stepper

Input stepper is the default number picker on most smartwatches (Fig. 2.2). However, different mo-
bile operating systems use different names to refer to this method, such as Spinner and Spinning
wheel. When users tap on a numeric value, it displays a full-screen virtual number wheel containing
all legal values. Spinning the wheel by flicking up on the screen increases the value and spinning
the wheel by flicking down decreases the value2. The pace of the increment and decrement is deter-
mined based on how fast users flick on the screen. Faster flicks rotate the wheel faster and slower

2Some smartwatches use a reversed mapping, where spinning the wheel by flicking up decreases the value and spin-
ning the wheel by flicking down increases the value. We decided against using this mapping to maintain interaction
consistency between the four examined number pickers.
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Figure 2.2: Input stepper is the default number picker on most smartwatches: it displays a full-screen
number wheel that users spin by flicking up or down to increment or decrement a numeric value,
respectively.

flicks rotate the wheel slower. When the desired number is displayed, users pick it by tapping on it.
Continuous spinning is not fully supported by the default method. Once flicked, the wheel keeps on
spinning for some time, gradually slowing down to a full stop. Hence, repeated flicks are needed for
continuous spinning of the wheel. We implemented this method using the default iOS SDK control
library3, without any customization.

Figure 2.3: Swipe-based number picker: the user swipes up to increment and swipes down to decre-
ment a numeric value.

2.3.2 Swipe-Based Picker

The swipe-based picker enables users to pick numbers by performing swipes (Fig. 2.3). Tapping on
a numeric value activates an invisible number wheel containing all legal values. Users then swipe
up or down on the screen to increment or decrement the value, respectively. One difference between
the default input stepper and swipe is: with the former, users perform a short quick flick, while
with the latter, users perform a steady swipe. A single swipe changes the value by one unit. Users
can activate continuous spinning of the number wheel by stroking and holding the swipe for 850
milliseconds. Lifting the finger deactivates continuous spinning. The pace of a spin is determined
based on the length of the swipe. Holding a long swipe increases or decreases the value faster,
while holding a short swipe increases or decreases the value slowly. This enables users to actively
pick a change rate appropriate for the task. Based on the findings of a pilot study (N = 12, M =
26.0 years) investigating various custom and commonly used functions [35, 44] for mapping control

3Apple Developer, Pickers - Controls - iOS - Human Interface Guidelines, https://developer.apple.com/design/
human-interface-guidelines/ios/controls/pickers.

https://developer.apple.com/design/human-interface-guidelines/ios/controls/pickers
https://developer.apple.com/design/human-interface-guidelines/ios/controls/pickers
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movements to the movements of a display object, referred to as the control-display (CD) gain, we
used the following function to determine the pace of a spin.

t(l) =
1

2
×
(
1− l

h

)3

(2.1)

Where t(l) is the pace of a spin relative to the length of a swipe l in pixels, and h is the height of
the active smartwatch touchscreen in pixels. Note that we also considered a temporal approach to
determine the pace of a spin, where the pace increases in proportion to the duration of a swipe-hold
(the wheel keeps on spinning faster as users continue with holding a swipe). However, it performed
poorly compared to the proposed approach in terms of speed and accuracy in another pilot study (N
= 6, M = 26.0 years). Besides, most participants found the mapping confusing.

Figure 2.4: Tilt-based number picker: the user tilts the device away from the body (up) or towards
the body (up) to increment and decrement a numeric value, respectively.

2.3.3 Tilt-Based Picker

The tilt-based method enables users to pick numbers by tilting their smartwatch towards or away
from their body, interpreted as tilting down and up, respectively (Fig. 2.4). Tilting the device once
then returning to the initial position changes the value by one unit. For continuous spinning of the
invisible number wheel, users tilt and hold the position for 850 milliseconds. Bringing the device
back to its initial position deactivates continuous spinning. The pace of a spin is determined based on
the angle of the tilt. Tilting the device at a steeper angle increases or decreases the value faster, while
tilting it at a slight angle increases or decreases the value slowly. This enables users to actively pick
a change rate appropriate for the task. First, we conducted a pilot study (N = 6, M = 26.0 years) to
explore various custom and commonly used functions for CD gain [35, 44] to map different tilt angles
to different spin pace. Selecting the most effective function was particularly challenging since tilting
the device too much not only caused irritation and fatigue but also made the text illegible. Hence,
based on Dunlop et al’s [54] recommendation, we tested 15◦ ± 9 angle as a possible range for tilt.
However, it was proven to be too sensitive for precise pace section in a second pilot study (N = 12,
M = 27.08 years). Besides, we observed that tilting the device towards the body is more difficult
than tilting away from the body, thus using the same range for the up and down tilts is impractical.
Based on this, we changed the range and selected the following function to determine the pace of a
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spin based on the findings of a third pilot study (N = 12, M = 26.01 years).

t(a) =


3
5 ×

(
1− |a−up_optimal|

up_threshold

)3.2
when tilting up

3
5 ×

(
1− |a−down_optimal|

down_threshold

)3
when tilting down

(2.2)

Where t(a) is the pace of a spin relative to the tilt angle a, up_threshold and down_threshold
are the maximum possible up and down tilts [−40◦, 30◦] based on the anatomy of the human wrist
[97], and up_optimal and down_optimal are the optimal up and down tilts [−30◦, 20◦] based on
the findings of the pilot studies. Like the swipe-based method, we also tested a temporal approach
to determine the pace of a spin, where holding a tilted position for longer increased the pace of the
spin and vice versa. However, it was significantly slower, more error prone, and caused irritation
and fatigue in the pilot study.

Figure 2.5: Force-based number picker: the user applies extra force to increment and soft force to
decrement a numeric value.

2.3.4 Force-Based Picker

The force-based method enables users to pick numbers by variating contact force on the screen. In-
creasing contact force increases the value and decreasing contact force decreases the value (Fig. 2.5).
The default Apple iOS SDK returns a value between 0 and 6.67 for the amount of force imparted by
the user’s finger onto the screen. We normalized it to the interval from 0 to 1 by dividing the received
force value by the maximum force (6.67). Then, based on the findings of a pilot study (N = 15, M =
27.7 years), we segmented this range into three force levels: soft (from 0 to 0.15), regular (from 0.15
to 0.3), and hard (from 0.3 to 1). Initially, we attempted an adaptive approach that adjusted the levels
of force based on users’ typical contact force. However, this method failed to accurately predict the
three levels of force in a pilot study investigating different positions and posture, including when
standing, sitting, and walking (N = 15, M = 23.9 years). It also bothered the participants that they
could not actively control the force levels. Further, it required a substantial amount of training data
for each participant, which can be challenging and often impractical in real-world scenarios. The
fixed range approach used in this work, in contrast, performed well in prior studies with smartphones
[16, 19], as well as in a third pilot study (N = 13, M = 28.46 years). Participants were able to learn
the three levels and replicate those in various settings without any major difficulties.

With the force-based method, changing the level of force once then returning to the regular force
changes the value by one unit. For continuous spinning of the invisible number wheel, users change
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the level of force and hold that level for 850 milliseconds. Changing the level or lifting the finger
deactivates continuous spinning. This method uses a temporal approach to determine the pace of a
spin in continuous spinning. Holding a specific level of force longer increases or decreases the value
faster at the following rates: 1 digit per 600 milliseconds for 2 seconds, 1 digit per 250 milliseconds
for 5 seconds, and 1 digit per 5 milliseconds. This incremental pace rate was selected based on the
findings of a fourth pilot study (N = 6, M = 26.5 years), where users could alter the contact force to
restart the rate, enabling them to actively pick a rate appropriate for a task. To keep users informed,
this method provides haptic feedback on each force level change. That is, the device vibrates for 200
milliseconds, as recommended by Kaaresoja and Linjama [81]. Since users do not necessarily have
to lift their finger to select a value with this method, once selected, they could slide their fingers to a
different value to edit it.

2.4 Experiment 1: Seated Vs. Walking
We conducted a user study to compare the four number pickers in both stationary and mobile settings.
The study protocol was reviewed and approved by the Institutional Review Board (IRB). The study
was completed before the World Health Organization (WHO) declared the outbreak of COVID-19 a
pandemic.

2.4.1 Apparatus

We used an iPhone X (43.6×70.9×7.7 mm, 174 grams) running on iOS version 12.1 at 1125×2436
pixels resolution in the user study. We developed a custom app using the default iOS SDK to simulate
an Apple Watch 5’s 740 mm2 display area (312×390 pixels) on the smartphone. We made the
surrounding area of the simulated smartwatch touch-insensitive to avoid the effects of accidental
touches during the study. We used a smartphone instead of an actual smartwatch since existing
smartwatches cannot detect the exact level of force applied on the screen (see Section 2.3). Apple
Watch detects only the absence and presence of extra force. We used a wristband with silicone
phone holder (55.5 grams) to attach the smartphone to the wrist of the participants like a smartwatch
(Figure 2.6). The wristband held the device on the wrist firmly, thus participants did not have to hold
it steady with the fingers of the other hand, although we noticed a few participants occasionally doing
that. The holder was 180◦ rotatable but we did not enable participants to rotate the device during
the study to eliminate a potential confound. We used a Fitness Reality TRE5000 electric treadmill
to simulate walking, which is common practice in controlled studies (e.g., [24, 26, 104, 129]).

Figure 2.6: The wristband and the device used in the user study.
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2.4.2 Participants

Twelve participants voluntarily took part in the study. None of them participated in the pilot studies.
Their age ranged from 20 to 39 years (M = 25.27, SD = 5.5). Six of them identified themselves as
female and six identified as male. Ten of them were right-handed and two were left-handed. All
right-handed participants chose to wear the device on their left hand and interact with the device
using the right hand, while all left-handed participants chose to wear it on the right hand and use
the other hand for interaction. They all were experienced smartphone users (M = 8.36 years of
experience, SD = 1.9). Two of them owned a smartwatch (M = 3.0 years of ownership, SD = 2.8).
Four of them also had experience using force as an input modality on Apple iPhone devices (M =
4.6 years of experience, SD = 3.6). They all received U.S. $10 for participating in the study.

2.4.3 Design

We used a within-subjects design for the study, where the independent variables were setting and
method, and the dependent variables were the following performance metrics.

• Task completion time (seconds) is the average time it took to change one presented value to
the target value.

• Actions per task is the average number of actions, including taps, swipes, tilts, and different
levels of force, performed to change one presented value to the target value.

Besides, participants were asked to complete the following questionnaires.

• A usability questionnaire that asked participants to rate various aspects of the examined num-
ber pickers on a 7-point Likert scale. It included four questions from the SUS questionnaire
[31] and two custom questions. The four questions from SUS were about the willingness to
use when seated and walking (SUS Q#1), ease of use (SUS Q#3), and learnability of the meth-
ods (SUS Q#7). The two custom questions were about the perceived speed and accuracy of
the methods. These questions were used since SUS does not include questions about system
speed or accuracy.

• A perceived workload questionnaire that included three questions from the NASA-TLX ques-
tionnaire [107] about mental demand (NASA-TLX Q#1), physical demand (NASA-TLX Q#6),
and frustration (NASA-TLX Q#6).

We did not use the full SUS and NASA-TLX questionnaires to reduce the time and effort needed
in the study. These questionnaires include 16 questions in total, which would have resulted in (2 ×
4×16 =) 128 questions in the study. Hence, we only used the questions that are most relevant to our
investigation. Hart [72], the creator of NASA-TLX, identified using a subset of the questions as one
of the most common usage of the questionnaire and did not discourage it. Leaving some questions
out of the SUS questionnaire is also common [96]. Note that we evaluated each scale individually
rather than calculating a single score per questionnaire to eliminate the possibility of biases in factor
analyses.

Participants were asked to complete both questionnaires upon the completion of the study to in-
crease the reliability of the data as it enabled them to compare the efforts needed with each method
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while rating them. We acknowledge that this increases the chance of the context effect, which sug-
gests participants tend to rate the latter methods more demanding than the ones they did earlier.
However, Hart [71] found it to be “typical of subjective ratings in general” and argued that it can
be avoided by being “careful to control context effects”, which we did by counterbalancing the con-
ditions using a balanced Latin square. This assured that participants experienced the methods in
different orders. Prior studies showed it to be an effective approach to mitigate context or order
effect [101, pp. 177–181]. In summary, the design was as follows.

12 participants ×

2 settings (seated and walking, counterbalanced) ×

4 methods (the default stepper, swipe, tilt, and force, counterbalanced) ×

15 random two-digit values between 9 and 100

= 1,440 numeric values in total, excluding practices.

2.4.4 Experimental Tasks

During the study, the app presented one numeric value at a time and asked the participants to change
it to a target value using the method under investigation (Fig. 2.7). Both the presented and the target
values were two-digit numbers between 9 and 100. All tasks were randomly generated for each
participant, making sure that there were equal number of increment and decrement tasks, and each
task had its equal counterpart. That is, the system paired each increment task with an equivalent
decrement task and vice versa, where the presented and target values had the same edit distance.
For example, for a decrement task: change “68” to “43”, there was an equivalent increment task:
change “23” to “48” (68 − 43 = 48 − 23 = 25). We used numbers between 9 and 100 based
on our observation that two-digit numbers, e.g., time (h:m:s), volume (0–100%), etc., are the most
commonly edited numeric values on smartwatches4. Further, it allowed us to constrain each study
session within one hour, reducing any potential effects of fatigue. It also enabled us to evaluate the
new methods with numeric values with which the default input stepper is the most effective. The
default input stepper method is likely to take more time and effort to edit larger numbers (> 100) as it
would require repeatedly flicking on the screen to keep the wheel spinning. While with the proposed
methods, users can continue spinning the wheel without performing additional actions until the target
number is reached.

2.4.5 Walking Speed and Safety

The treadmill was set on 1.0 mph (∼1.6 km/h) during the walking condition. We selected this rate
based on a prior study that showed that users usually maintain a walking speed between 0.9 and 1.2
mph (1.5 and 2.0 km/h) when using a mobile phone [105]. Appropriate safety measures were taken
during this condition. All participants were asked to attach the treadmill safety key to their clothing
and wear a bike helmet to prevent injuries in case of an unexpected slip, trip, or fall. Besides, there
were mandatory breaks between the conditions to prevent exhaustion for using the treadmill.

4Besides, informal investigations suggest that single- and two-digit numbers are the most frequently used [52] and the
most popular [25].
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Figure 2.7: A decrement task (change “66” to “56”) displayed on the study app (left), and two
participants taking part in the study while seated and while walking on a treadmill, respectively
(right).

2.4.6 Procedure

The study was conducted in a quiet room, one participant at a time. Upon arrival, we explained
the research to all participants and collected their consents. They then completed a demographics
and mobile usage questionnaire. The main study started after that. First, we demonstrated the first
method and enabled them to practice with it by performing two increment and two decrement tasks.
They were then asked to perform the experimental tasks (Section 2.4.4) both when seated and when
walking in a counterbalanced order. They were instructed to perform the tasks as fast as possible.
After successfully completing a task, they tapped on a button outside the smartwatch area to see the
next task. Once done with all tasks, we demonstrated the second method, enabled them to practice
with it, and asked them to perform the experimental tasks. This process continued until they experi-
enced all methods. The methods were also introduced in a counterbalanced order. Upon completion
of the study, the participants completed a questionnaire where they rated various aspects of the four
methods on a 7-point Likert scale, and the perceived mental and physical demands and frustration
using the NASA-TLX [107] questionnaire.

2.4.7 Results

A Shapiro-Wilk test revealed that the response variable residuals are normally distributed. A Mauchly’s
test indicated that the variances of populations are equal. Thus, we used a repeated-measures ANOVA
to analyze the quantitative data. In contrast, we used a Friedman test to analyze the questionnaire
data. We also report effect sizes of all statistically significant results: eta-squared (η2) for ANOVA
and Kendall’s W for Friedman test [11]. Eta-squared uses Cohen’s interpretation [45], where 0.01
constitutes a small, 0.06 constitutes a medium, and over 0.14 constitutes a large effect. Kendall’s W
uses a different interpretation by Cohen [45], where 0.1 constitutes a small, 0.3 constitutes a medium,
and over 0.5 constitutes a large effect. There were no significant effects of the order of conditions on
the dependent variables (p > .8), which suggests that counterbalancing worked [101, pp. 177–180].

2.4.7.1 Task Completion Time

An ANOVA identified a significant effect of method on task completion time (F3,33 = 23.76, p <
.000005, η2 = .07)5. An ANOVA failed to identify a significant effect of setting (F1,11 = 3.14, p =

5The p value was too small for the NCSS and SPSS statistical software to display the exact value as they and most
other statistical software display values up to six decimal places.
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(a) Task completion time (seconds) (b) Actions per task

Figure 2.8: Average task completion time and actions per task for all methods in the two settings
(stationary and mobile). Error bars represent ±1 standard deviation (SD).

.10). There was also no significant method × setting interaction effect (F3,33 = 1.17, p = .33). A
Tukey-Kramer Multiple-Comparison test revealed that swipe was significantly faster than all other
methods. Figure 2.8a illustrates average task completion time for the four methods in both settings.

2.4.7.2 Actions per Task

An ANOVA identified a significant effect of method on actions per task (F3,33 = 14.71, p =
.000003, η2 = .18). An ANOVA also identified a significant effect of setting (F1,11 = 8.02, p =
.016, η2 = .003). However, there was no significant method × setting interaction effect (F3,33 =
1.28, p = .30). A Tukey-Kramer Multiple-Comparison test revealed that stepper and tilt required
significantly fewer actions per task compared to swipe and force. Figure 2.8b illustrates average
actions per task for the four methods in both settings.

2.4.8 User Feedback

We used a non-parametric Friedman test to analyze the questionnaire data. Here, we present raw TLX
scores by analyzing the sub-scales individually, which is a common modification made to NASA-
TLX [71]. Note that the evidence is inconclusive about whether raw TLX is more sensitive, less
sensitive, or equally sensitive compared to the original version [71].

2.4.8.1 Perceived Performance and Preference

A Friedman test identified a significant effect of method on perceived speed (χ2 = 9.31, df = 3, p =
.025,W = .26), perceived accuracy (χ2 = 20.40, df = 3, p = .0001,W = .57), learnability
(χ2 = 15.61, df = 3, p = .001,W = .43), ease of use (χ2 = 18.47, df = 3, p = .0003,W = .51),
and willingness to use in both stationary (χ2 = 10.07, df = 3, p = .01,W = .28) and mobile
settings (χ2 = 12.49, df = 3, p < .006,W = .35). Participants rated picker and swipe substantially
higher in all aspects compared to tilt and force. Force received the poorest ratings of all methods.
Figure 2.9a illustrates average user ratings of the four methods.
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(a) Usability questionnaire (b) Partial NASA-TLX questionnaire

Figure 2.9: Average user ratings of the four methods on a 7-point Likert scale, where “1” to “7”
represented “strongly disagree” to “strongly agree” (left) and on NASA-TLX’s 20-point scale, where
“1” to “20” represented “no demand” to “extreme demand” (right). Error bars represent±1 standard
deviation (SD).

2.4.8.2 Mental and Physical Demand

A Friedman test identified a significant effect of method on mental demand (χ2 = 11.65, df =
3, p = .009,W = .32), physical demand (χ2 = 17.88, df = 3, p = .0004,W = .5), and frustration
(χ2 = 19.41, df = 3, p = .0002,W = .54). Participants found picker and swipe to be the least
mentally and physically demanding compared to tilt and force. They also found the former methods
to be the least frustrating. Force was rated substantially higher in terms of mental and physical
demand, as well as frustration, compared to the other methods. Figure 2.9b illustrates average user
ratings of the four methods.

2.5 Discussion
Results revealed that swipe was the fastest of all methods in both stationary and mobile settings. The
average task completion time for stepper, swipe, tilt, and force were 4.31 (SD = 1.8), 3.44 (SD = 3.7),
4.97 (SD = 2.6), and 5.42 (SD = 3.7) seconds, respectively. On average, swipe was about 30–45%
faster than the other methods, regardless of the fact that it required significantly more actions per task
than picker and tilt. This is likely because participants found performing swipes significantly easier
than the other methods (Fig. 2.9). They also felt that performing swipes required less cognitive and
physical demand than tilt and force, and caused less frustration (Fig. 2.9b). They found both stepper
and swipe to be fast, accurate, and easy to use. There was no significant effect of method× setting on
task completion time, which indicates towards the possibility that the performance of each method
was similar across settings. This is interesting since prior studies reported performance decay when
walking and interacting with a mobile device at the same time [38, 12]. This could be because of the
slower pace of walking, and the use of a treadmill for walking since it did not require navigation. In
real-world scenarios, users are forced to split their attention between the surroundings and the tasks
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on mobile devices to keep informed about the changing ambient environment [12]. Relevantly, a
recent study with a similar experimental setup also failed to find a statistically significant difference
in performance between input tasks in stationary and mobile settings [88]. On average, stepper was
faster than tilt and force, however this difference was not statistically significant.

There was a significant effect of setting on actions per task, but no significant effect of method
× setting. Which suggests that all methods suffered in terms of actions per task in mobile setting.
Participants most likely performed more incorrect actions while walking, requiring corrective action,
resulting in added actions per task. Interestingly, stepper took fewer actions than the other methods.
Average actions per task for stepper, swipe, tilt, and force were 1.69 (SD = 1.2), 3.69 (SD = 3.5), 2.35
(SD = 1.5), and 4.81 (SD = 4.9), respectively. We speculate this is because, users spun the number
wheel then waited until it slowed down, rather than a burst of repetitive spins. This also explains the
higher task completion time for the method (Fig. 2.8).

The effects of method on the dependent variables yielded medium–large effect sizes, while the
effect sizes of all statistically significant questionnaire data were large, indicating strong relationships
between the examined variables. However, the effects of setting yielded a small effect size, hence
we recommend caution in interpreting this result.

2.6 Experiment 2: Individual Vs. Inline
We conducted a second study to investigate whether the performance of the four methods differ when
working with individual values and values embedded in text (i.e., inline values). The purpose was
to find out whether the increased visual scan time and the physical and cognitive loads involved in
editing inline numeric values affect the performance of the examined methods. Inline values usually
require extra time to locate and select due to the surrounding text and the “fat-finger problem” [132],
respectively. The study protocol was reviewed and approved by the Institutional Review Board (IRB).
The study was completed before the World Health Organization declared the outbreak of COVID-19
a pandemic.

2.6.1 Apparatus

We used the same apparatus as the first study (Section 2.4.1).

2.6.2 Participants

Twelve participants voluntarily took part in the study. None of them participated in the pilots or
the first study. Their age ranged from 20 to 32 years (M = 23.36, SD = 4.0). Two of them identified
themselves as female and ten identified as male. Ten of them were right-handed, one was left-handed,
and one was ambidextrous. All right-handed and ambidextrous participants chose to wear the device
on their left hand and interact with the device using the right hand, while the left-handed participant
chose to wear it on the right hand and use the other hand for interaction. They all were experienced
smartphone users (M = 7.62 years of experience, SD = 1.9). Three of them were smartwatch owners
(M = 1.8 years of ownership, SD = 0.8). Five of them also had experience using force as an input
modality on Apple iPhone devices (M = 1.9 years of experience, SD = 1.7). They all received U.S.
$10 for participating in the study.
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Figure 2.10: A numeric value embedded in text (left) and two participants taking part in the study
by changing an individual value and a value embedded in text, respectively (right).

2.6.3 Design

We used a within-subjects design for the study, where the independent variables were placement
and method, and the dependent variables were the same performance metrics as the first study (Sec-
tion 2.4.3). We also used the same questionnaires. In summary, the design was as follows.

12 participants ×

2 placements (individual and inline, counterbalanced) ×

4 methods (the default stepper, swipe, tilt, and force, counterbalanced) ×

15 random two-digit values between 9 and 100

= 1,440 numeric values in total, excluding practices.

2.6.4 Procedure

The study used the same procedure (Section 2.4.6) and experimental tasks (Section 2.4.4) as the first
study, with the setting independent variable replaced with placement.

(a) Task completion time (seconds) (b) Actions per task

Figure 2.11: Average task completion time and actions per task for all methods in the two settings
(individual and inline). Error bars represent ±1 standard deviation (SD).
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2.6.5 Results

A Shapiro-Wilk test revealed that the response variable residuals are normally distributed. A Mauchly’s
test indicated that the variances of populations are equal. Thus, we used a repeated-measures ANOVA
to analyze the quantitative data. In contrast, we used a Friedman test to analyze the questionnaire
data. We also report effect sizes of all statistically significant results: eta-squared (η2) for ANOVA
and Kendall’s W for Friedman test [11]. Eta-squared uses Cohen’s interpretation [45] where 0.01
constitutes a small, 0.06 constitutes a medium, and > 0.14 constitutes a large effect. Kendall’s W
uses a different interpretation by Cohen [45], where 0.1 constitutes a small, 0.3 constitutes a medium,
and > 0.5 constitutes a large effect. There were no significant effects of the order of conditions on the
dependent variables (p > .75), which suggests that counterbalancing worked [101, pp. 177–180].

2.6.5.1 Task Completion Time

An ANOVA identified a significant effect of method on task completion time (F3,33 = 69.88, p <
.000005, η2 = .23)6. An ANOVA also identified a significant effect of placement (F1,11 = 22.37, p =
.0006, η2 = .03). There was also a significant method × placement interaction effect (F3,33 =
4.60, p = .0081, η2 = .01). A Tukey-Kramer Multiple-Comparison test revealed that all methods
were significantly different from one another. Swipe was significantly faster and force was signifi-
cantly slower than all other methods. Figure 2.11a illustrates average task completion time for the
four methods in both placements.

2.6.5.2 Actions per Task

An ANOVA identified a significant effect of method on actions per task (F3,33 = 5.17, p = .004, η2 =
.12). An ANOVA failed to identify a significant effect of placement (F1,11 = 0.34, p = .57). There
was no method × placement interaction effect (F3,33 = 1.55, p = .22). A Tukey-Kramer Multiple-
Comparison test revealed that stepper and force were significantly different from one another. Stepper
required significantly fewer actions per task compared to force. The other two methods were com-
parable. Figure 2.11b illustrates average actions per task for the four methods in both placements.

2.6.6 User Feedback

We used a non-parametric Friedman test to analyze the questionnaire data. Like the previous study,
we present raw TLX scores by analyzing the sub-scales individually [71].

2.6.6.1 Perceived Performance and Preference

A Friedman test identified a significant effect of method on ease of use (χ2 = 11.78, df = 3, p =
.008,W = .32). However, no significant effect was identified on perceived speed (χ2 = 7.8, df =
3, p = .05), perceived accuracy (χ2 = 7.73, df = 3, p = .05), learnability (χ2 = 7.19, df = 3, p =
.06), or willingness to use (χ2 = 10.07, df = 3, p < .05). Figure 2.12a illustrates average user
ratings of the four methods.

6The p value was too small for the NCSS and SPSS statistical software to display the exact value as they and most
other statistical software display values up to six decimal places.
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(a) Usability questionnaire (b) Partial NASA-TLX questionnaire

Figure 2.12: Average user ratings of the four methods on a 7-point Likert scale, where “1” to “7”
represented “strongly disagree” to “strongly agree” (left) and on NASA-TLX’s 20-point scale, where
“1” to “20” represented “no demand” to “extreme demand” (right). Error bars represent±1 standard
deviation (SD).

2.6.6.2 Mental and Physical Demand

A Friedman test identified a significant effect of method on mental demand (χ2 = 11.64, df =
3, p = .009,W = .32), physical demand (χ2 = 16.10, df = 3, p = .001,W = .45), and frustration
(χ2 = 12.57, df = 3, p = .006,W = .35). Participants found picker and swipe to be the least
mentally and physically demanding compared to tilt and force. They also found the former methods
to be the least frustrating. Force was rated substantially higher in terms of mental and physical
demand, as well frustration compared to the other methods. Figure 2.12b illustrates average user
ratings of the four methods.

2.7 Discussion
The findings of this study are comparable to the first study. Swipe was significantly faster than the
other methods with both individual and inline numbers. Average task completion time for stepper,
swipe, tilt, and force were 4.23 (SD = 1.5), 3.13 (SD = 1.7), 5.23 (SD = 2.9), and 6.39 (SD = 4.3)
seconds, respectively. Also, stepper and force required the least and the most number of actions,
respectively. Average actions per task for stepper, swipe, tilt, and force were 1.67 (SD = 1.2), 3.02
(SD = 2.5), 2.01 (SD = 1.2), and 3.69 (SD = 4.5), respectively.

Qualitative results are also similar. Participants found both stepper and swipe significantly easier
to use than the other methods. They found picker and swipe to be the least mentally and physically
demanding compared to tilt and force. They also found swipe to be the least frustrating. These
findings establishes the swipe-based method as a more effective input stepper for smartwatches.
However, comparing Fig. 2.9b and Fig. 2.12b one can see that the methods were rated relatively
poorly on NASA-TLX scale in the second study. This is expected since the inline placement of the
numeric values required users to first locate and navigate to the value, then edit it, which required
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additional effort.
The effects of method on the dependent variables yielded medium–large effect sizes, while the

effect sizes of all statistically significant questionnaire data were large, indicating strong relationships
between the examined variables. However, the effects of placement yielded a small effect size, hence
we recommend caution in interpreting this result.

2.7.1 Design Recommendations

Based on the results of the two studies and user feedback, we recommend using a hybrid of input
stepper and the swipe-based method to enable selection of numbers with short edit distances with
flicks (e.g., changing “12:15 pm” to “12:30 pm”) and long edit distances with swipes and swipe-and-
hold gestures (e.g., changing “15%” to “70%”). We also recommend automatically slowing down
the spinning rate when the number reaches a probable value for easier selection. A prior work [111]
showed that it is often possible to predict the intended value through contextual awareness and even
by using simple rules and patterns (for example, “12:30 pm” is more probable than “12:22 pm”). It
may also be effective to enable users to select the method they prefer the most for picking numbers.

2.8 Generalizability
Although it is relatively common to use smartphones or tablets to study interactions with smart-
watches because of the technological limitations of current smartwatches (e.g., [41, 110, 94]), due
to the absence of empirical evidence, it is unclear whether the performance recorded on a simulated
smartwatch is generalizable to actual smartwatches. Hence, to increase the external validity of the
work, we replicated not only the interface but also the holding position and posture of a smartwatch
(Fig. 2.6). In all evaluations, participants wore the simulated smartwatch (i.e., the smartphone) on
their wrist and interacted with it as one would with an actual smartwatch. Relevantly, a prior work
reported that text entry performances with similar sized virtual keyboards on an actual smartwatch
and a simulated smartwatch on a smartphone were not significantly different in terms of entry speed
and accuracy [140].

2.9 Conclusion
We presented three new methods for number picking on smartwatches by performing directional
swipes, twisting the wrist, and varying contact force on the screen. Unlike the default number
picker, the proposed methods enable users to actively switch between slow-and-steady and fast-and-
continuous increments and decrements. We evaluated these methods in two user studies, exploring
stationary vs. mobile settings and individual vs. inline number editing, respectively. In both stud-
ies, the swipe-based method yielded a significantly faster input rate. Participants also found the
method fast, accurate, and the least mentally and physically demanding. Accuracy rates were com-
parable among the conditions. These results establish swipe as an effective number picking method
on smartwatches.

In the furture, we will evaluate the proposed number pickers on larger touchscreen-based devices,
particularly smartphones and tablets. We will also design additional methods that exploit the crown
and the bezel of a smartwatch for number picking.
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Chapter 3

Force-Based Input on Smartwatches

3.1 Introduction
Smartwatches are becoming increasingly popular among mobile users [90]. However, selecting tar-
gets, particularly small targets, is difficult on smartwatches due to the “fat-finger problem” [132]. To
facilitate precise target selection, most smartwatch applications either clutter the interface by using
large interactive elements or require users to perform a sequence of actions. Both of these approaches
affect performance and user preference [82, 116]. In this work, we propose a one-directional force-
based target selection approach, with which users slide the finger closer to the target, then variate
contact force to move the cursor along the x-axis (reducing the force moves the cursor to the left and
increasing the force moves the cursor to the right) to select the target.

Toward this, we first identify the most comfortable range of force on smartwatches. We then
compare one-directional force with traditional touch in a Fitts’ law experiment. Finally, to demon-
strate practical usage of the proposed method, we design and evaluate two new force-based text entry
techniques for smartwatches (Section 3.6). Unlike the existing techniques, these neither occupy most
of the display nor use aggressive correction model by disabling character-by-character input. The
contribution of this work is thus threefold: identifying the most comfortable range of force on smart-
watches, comparison of one-directional force-tap with conventional touch in a Fitts’ law study, and
the design and evaluation of two new novel force-based keyboards. All studies reported here were ap-
proved by the Institutional Review Board (IRB) and conducted abiding by the institute’s COVID-19
preventive measures.

3.2 Related Work
Not much work has focused on target selection on smartwatches. Hara, Umezawa, and Osawa [69]
investigated the effects of button size and location on target selection performance with the index
finger. They found out 5 mm and 7 mm targets are susceptible to significantly higher selection
errors than 10 mm targets. Ishii and Shizuki [79] developed eight different callout features that
display and magnify the area occluded by the finger in a non-occluded area. In multiple evaluations,
participants found these methods to be useful in target selection. Xia, Grossman, and Fitzmaurice
[136] developed a finger-mounted fine-tip stylus to enable fast and accurate pointing with almost no
occlusion. In a study, the stylus reduced erroneous selection by 80% compared to traditional touch
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(a) The wristband (b) The custom Apple iOS application

Figure 3.1: (a) The wristband used in the study and (b) participants applying force on the screen.
The grey, green, and red background colors indicate the initial force level, and correct and incorrect
changes in the force level, respectively.

interaction. Yeo et al. [139] compared target selection in all directions with force-tap, twist, and pan
gestures, where force-tap was the most challenging of all methods since it was difficult to apply force
in the correct direction. Kurosawa, Sakamoto, and Ono [89] used a tilt and force hybrid method for
target selection on a smartwatch. This method uses an electromyography sensor on the arm to detect
tilting of the device. To select a target, users first tilt the hand to indicate the cursor direction, then
apply force on the arm to move the cursor to the target. Darbar, Sen, and Samanta [48] augmented
a smartwatch with four pressure sensors to enable users to apply different levels of force on the two
sides of the device for zooming, scrolling, and rotating an interactive map. Ahn et al. [1] used a
pressure-sensitive wristband to perform similar interactions. These three methods, however, require
extramural hardware to function.

There has been some research on force-based text entry on smartphones. McCallum et al. [102]
developed a force-based technique for the standard 12-key mobile keypad by utilizing three levels
of force. Likewise, Tang, Beebe, and Kramer [125] developed a three-key chorded keyboard with
three force levels. Both these methods were highly error prone, yielding 9% and 18% error rates in
user studies, respectively. Brewster and Hughes [30] presented several pressure-based techniques to
switch between uppercase and lowercase letters on a virtual Qwerty, some of which were faster and
more accurate than the Shift key. Arif and Stuerzlinger [18] and Arif, López, and Stuerzlinger [13]
developed an error prevention technique that requires applying extra force on the keys to enter the
less probable letters. The effects of the approach on text entry performance were contradictory in
two consecutive studies. Arif and Stuerzlinger [19] enabled bypassing auto-correction by applying
extra force on the keys. In an evaluation, this approach significantly improved text entry speed and
accuracy. Vertanen et al. [131] used a similar approach on smartwatches. Zhong et al. [144] de-
veloped a one-dimensional alphabetical keyboard with a sliding cursor over the letters. The cursor
covered multiple letters. Users moved the cursor by variating contact force, confirmed selection by
performing a quick release (reducing pressure quickly without lifting the finger), the keyboard then
disambiguated the input using a probabilistic model. It also enabled entering one character at a time
by using a multi-tap [80] like approach. The keyboard displayed the selected letters in descending
order of probability, users then multi-tapped on the screen to select the intended letter. In an evalu-
ation, the word- and character-level approaches yielded on average 4 and 11 wpm, respectively, on
a smartphone. Chapater 2 (Chap. 2) also presented a force-based approach to pick numbers from
a number wheel on smartwatches. There are, however, no force-based character-level text entry
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methods available for smartwatches.

3.3 User Study 1: Levels of Force
We conducted a user study to investigate the levels of force users can comfortably apply on smart-
watches. The purpose was to map the most comfortable range of force to cursor movements on a
tiny display.

3.3.1 Participants

Thirteen participants took part in the study. Their age ranged form 24 to 34 years (M = 28.5, SD
= 3.4). Three of them identified themselves as women and ten as men. Nine of them were right-
handed and four were left-handed. All of them were experienced mobile users (M = 8.4 years, SD =
2.3). Five of them also owned a smartwatch (M = 0.5 years, SD = 0.9). Six of them had experience
with force-based interaction through Apple iOS’s 3D touch [29]. They all received U.S. $10 for
participating in the study.

3.3.2 Apparatus

We used an iPhone X (43.6×70.9×7.7 mm, 174 grams) running on iOS version 12.1 at 1125×2436
pixels resolution in the user study. We developed a custom app using the default iOS SDK to sim-
ulate an Apple Watch 5’s 740 mm2 display area (312×390 pixels) on the smartphone. We made
the surrounding area of the simulated smartwatch touch-insensitive to avoid the effects of acciden-
tal touches during the study. We used a smartphone instead of an actual smartwatch since current
smartwatches do not provide the support for continuous force detection. Apple Watch detects only
the absence and presence of extra force. It is relatively common to use larger devices to study in-
teractions with smartwatches due to technological limitations of current smartwatches [41, 110, 94,
79]. Relevantly, a prior work reported that text entry performances of a keyboard on an actual smart-
watch and a simulated smartwatch on a smartphone were comparable in terms of speed and accuracy
[140]. To increase the external validity of the work, we replicated not only the interface but also the
holding position and posture of a smartwatch. We used a wristband with silicone phone holder (55.5
grams) to attach the smartphone to the wrist of the participants like a smartwatch (Fig. 3.2a). The
wristband held the device on the wrist firmly, thus participants did not have to hold it steady with
the fingers of the other hand, although we noticed a few participants occasionally doing that. The
holder was 180◦ rotatable but we did not enable participants to rotate the device during the study to
eliminate a potential confound.

3.3.3 Design & Procedure

First, the participants signed the informed consent form and completed a demographics and mobile
usage questionnaire. We then explained the research and demonstrated the custom app. Participants
were instructed to wear the device on their non-dominant hand and interact using the other hand. All
participants were seated, but were instructed not to rest their arms on the desk to increase the external
validity of the study. The app displayed one force level on the screen. Participants were instructed
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(a) The wristband (b) The custom Apple iOS application

Figure 3.2: (a) The wristband used in the study and (b) participants applying force on the screen.
The grey, green, and red background colors indicate the initial force level, and correct and incorrect
changes in the force level, respectively.

to touch the screen, then chance contact force as as instructed on the display, without compromis-
ing physical comfort. The area surrounding the simulated smartwatch screen was inactive, but was
used to provide feedback on the applied level of force by changing the background color. Initially,
the background color was grey, but changed to green when participants changed contact force cor-
rectly (reduced force for soft) and to red when changed contact force incorrectly (reduced force for
hard) (Fig. 3.2b). Correct and incorrect force levels were determined based on the increments and
decrements of the force value rather than predetermined thresholds for different levels. The system
identified a correct input when the force value changed in accordance to the displayed force level.
For example, for hard force level, the system registered a correct input when the force value was
gradually increasing. The system ignored slight variations in the force level (abrupt, discontinuous
changes) since it is almost impossible for users to maintain a constant level of force. Once done with
one level, the app displayed the next force level. This process continued until all tasks of a block
were completed. There were three block, each containing (3 levels× 18 tasks) 54 tasks. Participants
were asked to take ∼5 minutes break before starting the next block to mitigate any discomfort due
to variating contact force. In summary, the design was: 13 participants × 3 blocks × 3 levels (soft,
regular, hard) randomized × 18 tasks = 1,755 data points in total. Upon completion, participants
took part in a brief interview discussing their experience in the study.

3.3.4 Results & Discussion

The default Apple iOS SDK returns a value between 0 and 6.67 for the amount of force imparted
by the user’s finger onto the screen. Similar to Chapter 2, we normalized it to the interval from 0
to 1 by dividing the received force value by the maximum force (6.67) for better presentation. The
median force applied for soft, regular, and hard tasks were 0.10 (SD = 0.08), 0.39 (SD = 0.12),
and 0.55 (0.12), respectively (Fig. 3.3b). We, thus, decided to use [0.05, 0.80] as the rage of our
mapping function, where the lowest value is ∼ 1

2 × SD from the median of soft force level and
the highest value is ∼ 2 × SD from the median of hard force level. These values were picked by
closely studying the force patterns of all participants. While participants were fairly consistent in the
minimum levels of force applied on the screen, their maximum levels of force varied. In about 10%
of all incidents, participants applied a maximum force level closer to 0.8. This suggests that they
are comfortable with this force level. Participants also confirmed this in the post-study interview.
This encouraged us to increase the maximum value to offer more granularity in the proposed force-
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(a) Task completion time (ms) (b) Median force per level (c) Force applied in all tasks

Figure 3.3: (a) Average task completion time (ms) per block for each force level, (b) median force
applied per level, and (c) a radar chart showing force applied in each task. Error bars represent ±1
standard deviation (SD).

based selection method. In Fig. 3.3c, one can see that force values rarely went outside this range.
The values between the range were then mapped to the 368 px horizontal space of the smartwatch
using a linear function (Fig. 3.4). There was a significant effect of level on task completion time
(F2,12 = 63.94, p < .0001). On average, soft, regular, and hard tasks took 149.03 ms (SD = 171.2),
557.28 ms (SD = 373.2), and 701.67 ms (SD =643.5) to complete, respectively (Fig. 3.3a).

(a) Smartwatch screen (b) The linear mapping function

Figure 3.4: The force values within the range [0.05, 0.80] are mapped to the pixels of the display
using a linear function.

3.4 1D Fitts’ Law Protocol
Fitts’ law is a well-established method for evaluating target selection on computing systems [100].
In the 1990s, it was included in the ISO 9241-9 standard for evaluating non-keyboard input devices
by using Fitts’ throughput as a dependent variable [123]. Most one-dimensional (1D) Fitts’ law
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experiments combine serial responses with 1D movements. The targets of widthW are placed on the
two sides of the display (Fig. 3.5b). The target to select is highlighted. Once selected, the highlight
moves to the opposite target. This back-and-forth selection continues until all targets are selected.
Each movement covers an amplitude A, which is distance to the centre of the target (Fig. 3.5a). A
trial is defined as one target selection task, whereas completing all tasks with a given amplitude is
defined as a sequence. Throughput cannot be calculated on a single trial because a sequence of trials
is the smallest unit of action in ISO 9241-9. Traditionally, the difficulty of each trial is measured in
bits using an index of difficulty (ID), calculated as follows:

ID = log2(
A

W
+ 1) (3.1)

The movement time (MT ) is measured in seconds for each trial, then averaged over the sequence
of trials. It is then used to calculate the performance throughput (TP ) in bits/second (bps) using the
following equation:

TP =
ID

MT
(3.2)

The revised ISO 9241-9 (9241-411) [78] measures throughput using an effective index of difficult
IDe, which is calculated from the effective amplitude Ae and the effective width We to make sure
that the real distance traveled form one target to the next is measured. It also takes into account the
spread of selections about the target center.

TP =
IDe

MT
(3.3)

IDe = log2(
Ae

We
+ 1) (3.4)

The effective amplitude is the real distance travelled by the participants, while the effective width
is calculated as follows, where SDx is the standard deviation of the selection coordinates projected
on the x-axis for all trials in a sequence. This accounts for any targeting errors by the participants,
assuming that participants were aiming at the center of the targets.

We = 4.133× SDx (3.5)

(a) The 1D Fitts’ law task in ISO 9241-
9 (b) The custom Apple iOS application

Figure 3.5: (a) The target is highlighted in purple, (b) the custom Apple iOS app displayingA = 140,
W = 80. It uses the same selection sequence as ISO 9241-9.
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3.5 User Study 2: 1D Fitts’ Law Study
We conducted a Fitts’ law study to compare target selection performance of tap and force-tap. The
purpose was to investigate if force-tap could be effective in selecting small targets on smartwatches.
We focused only on movements in the x-axis because we envision force as a companion of touch
rather than an independent selection method, where users tap in the proximity of a target then move
the cursor to the left or right for precise selection. Besides, the difficulties in applying force in all
directions is evident in a prior work [139], where force was significantly slower (2,600 ms) and more
error prone (1.6%) than twist and pan gestures.

3.5.1 Participants

Twelve participants took part in the study. Their age ranged from 20 to 34 years (M = 29.3, SD =
2.3). Five of them identified themselves as women and seven as men. Ten of them were right-handed
and two were left-handed. They all were experienced mobile device users (M = 10.8 years, SD =
2.7). Nine of them had experience with force-based interaction through Apple iOS’s 3D touch [29].
They all received U.S. $15 for participating in the study.

3.5.2 Apparatus & Design

The study used the same apparatus as the previous study (Section 3.3.2). A custom app was de-
veloped carry out the 1D Fitts’ law protocol described above. The experiment was a 2 × 3 × 3
within-subjects design. The independent variables were method (tap, force-tap), amplitude: 80,
140, 200 px (20, 35, 50 mm), and width: 10, 40, 80 px (1.5, 12.5, 20 mm). There were 20 trials
per condition. The amplitudes were selected based on the display area, to make sure that the targets
do not overlap or go outside the boundary. The widths were selected based on the optimal widths
recommended in prior research and design guidelines [69, 70, 77, 74]. The dependent variables were
throughput (TP) and movement time (MT ).

3.5.3 Procedure

The study used the same procedure as the previous study (Section 3.3.3), except for the tasks, which
were in accordance with the 1D Fitts’ law protocol discussed in Section 3.4. In the study, participants
selected targets using the two selection methods in a counterbalanced order. The cursor was initially
positioned in between the targets, then moved back-and-forth from one target to another by either
tap or variating contact force. Participants were instructed to select the targets as fast as possible.
Incorrect selections were not allowed, in such cases, participants had to select it again. We enforced
a ∼5 minute break after a condition to avoid the effect of fatigue. After the completion of both
conditions, participants completed the NASA-TLX questionnaire [20] to rate the perceived workload
of the methods. They also took part in a brief interview session to discuss their experience in the
study.
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(a) Throughput (bps) (b) Movement time (ms)

Figure 3.6: Average throughput (bps) and movement time (ms) for both methods across all examined
widths and amplitudes. Error bars represent ±1 standard deviation (SD).

3.5.4 Results

3.5.4.1 Throughput

An ANOVA identified a significant effect of method on throughput (F1,11 = 76.05, p < .0001). The
average throughput for tap and force-tap were 2.7 bps (SD = 1.8) and 1.5 bps (SD = 0.4), respectively.
An ANOVA also identified significant effects of width (F2,11 = 165.50, p < .0001) and amplitude
(F2,11 = 24.56, p < .0001). The method × width interaction effect was also statistically significant
(F2,22 = 78.12, p < .0001). However, the method × amplitude interaction effect was not statistically
significant (F2,22 = 3.15, p = .06). Fig. 3.6a illustrates average throughput for both methods across
all examined widths and amplitudes.

3.5.4.2 Movement Time

An ANOVA identified a significant effect of method on movement time (F1,11 = 5.92, p < .05).
The average movement time for tap and force-tap were 4,098 ms (SD = 5,266) and 2,052 ms (SD
= 1,282), respectively. There was also a significant effect of width (F2,11 = 30.78, p < .0001).
However, no significant effect of amplitude was identified (F2,11 = 0.69, p = 0.51). The method ×
width interaction effect was also statistically significant (F2,22 = 11.02, p < .0005). But the method
× amplitude interaction effect was not statistically significant (F2,22 = 0.96, p = 0.4). Fig. 3.6b
illustrates average movement time for both methods across all examined widths and amplitudes.

3.5.4.3 Perceived Workload

We present raw TLX scores by analyzing the sub-scales individually, which is a common modifica-
tion made to NASA-TLX [72]. A Wilcoxon Signed-Rank test failed to identify significant effects of
method on mental demand (z = −0.18, p = .86), physical demand (z = −0.1, p = .92), temporal
demand (z = −0.23, p = .81), performance (z = −1.65, p = .10), and effort (z = −1.25, p = .21).
However, a significant was identified on frustration (z = −2.52, p < .05). Fig. 3.7c illustrates aver-
age NASA-TLX ratings of the two methods.
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(a) Tap (b) Force-tap (c) Average NASA-TLX scores

Figure 3.7: Two participants selecting targets with (a) tap and (b) force-tap, and (c) average perceived
workload of the two methods. The red asterisk indicate statistically significant difference.

3.5.5 Discussion

Tap yielded significantly higher throughput than force-tap (∼80% higher). However, the interaction
effects suggest that throughput of the two methods were significantly affected by the target size and
amplitude. A post-hoc Tukey-Kramer test revealed that force-tap performed significantly better with
the smallest target (∼120% higher throughput), while tap performed significantly better with the
bigger ones (∼100–151% higher throughput). This is also evident in Fig. 3.8 that illustrates average
throughput for the two selection methods with the three target sizes (10, 40, 80 pixels) fitted to power
trendlines. As one can see, both selection methods conformed to Fitts’ law, as expected — with both,
throughput decreased linearly with decreasing target sizes (tap: R2 = 0.91, force-tap: R2 = 0.88),
however, tap had a much steeper drop than force-tap.

Overall, force-tap was significantly faster than tap (∼50% faster). A deeper analysis indicated
that difficulties in selecting the smallest target contributed to this. A post-hoc Tukey-Kramer test re-
vealed that selection time for the smallest target was significantly slower with tap than with force-tap

Figure 3.8: Average throughput (bts) for the two selection methods with the three target sizes fitted
to power trendlines.
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(∼67% slower), while selection time for the larger targets were somewhat comparable (see Fig. 3.6b).
These suggest that force could be an effective method for selecting smaller targets on tiny displays.
Post-study questionnaire and interview also support this. Participants found both methods relatively
similar in terms of mental, physical, and temporal demands, performance, and effort, but were sig-
nificantly more frustrated with tap than force-tap (see Fig. 3.7c), primarily due to the smaller targets.
One participant (male, 27 years) commented, “Some blocks have very tiny boxes and it was very hard
to hit the right place. It was frustrating.” Another participant (female, 29 years) said, “Both touch
and force seemed the same for bigger squares.” Participants also commented on the learnability of
force-tap. One participant (male, 34 years) stated, “Force is pretty novel to me, it took me a little time
to get used to the smallest one. Once I got used to it, I could finish the task faster than beginning.”
Some participants, on the other hand, preferred using force-tap exclusively on smartwatches. One
participant (female, 27 years) commented, “It is much easier for me to complete the task of force than
touch.” Based on the findings, we recommend enabling both tap and force-tap on smartwatches. Tap
is fast and reliable for bigger targets, but for those occasional smaller targets, force-tap is much more
reliable, faster, and causes less frustration.

(a) Initial state (b) Slide-force keyboard (c) Slide-force-slide keyboard

Figure 3.9: (a) The initial state of the keyboards showing all letters from ‘a’ to ‘z’, (b) the process
of entering the letter ‘k’ with the slide-force keyboard: the user slides her finger anywhere on the
screen in relevance to the target, the keyboard magnifies the five nearby keys, because the target is
on the left, the user reduces contact force to highlight the letter, then releases touch to enter it, (c)
the process of entering the letter ‘n’ with the slide-force-slide keyboard: the user slides her finger
anywhere on the screen in relevance to the target, she applies extra force to replace the keyboard with
magnified versions of the five nearby keys, the user then slides her finger over the target letter and
releases touch to enter it.

3.6 Slice Keyboards
To demonstrate practical usage of force input, we designed two slide and force (slice) keyboards
that enable users to enter one character at a time using force-tap and finger slide gestures. We used
text entry as our test scenario because entering text is an extreme case of target selection, requiring
repetitive selection of different targets (the keys). We designed two alphabetical slice keyboards
that display all letters of the English alphabet in a 368 × 70 px row (Fig. 3.9a). To enter a letter,
the user slides her finger horizontally along the x-axis anywhere on the screen. The letter closest
to the x-coordinate of the finger and the two neighbouring letters from each side (five in total) are
magnified using a zoom-in effect. The slide-force keyboard highlights the central letter (Fig. 3.9b).
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The user can reduce contact force to highlight the left letters or increase contact force to highlight the
right letters. Realising touch enters the highlighted letter. The slide-force-slide keyboard does not
highlight the magnified letters (Fig. 3.9c), instead requires the user to apply extra force to replace the
keyboard with magnified versions of the five letters (73.6 × 70 px each). The initial zoom-in mode
of both keyboards are identical. But since the slide-force-slide keyboard enables target selection via
both force and slide, the candidate five letters are displayed on the keyboard area to facilitate sliding.
Initially, the central letter is highlighted, but the user can side her finger over any key, then release
touch to enter the corresponding letter. Both keyboards enable the entry of space and backspace by
performing swift left and right strokes, respectively, anywhere on the screen.

3.7 User Study 3: Slide-Force v. Slide-Force-Slide
We conducted a user study to compare the two keyboards. Apart from evaluating the new keyboards,
one purpose of the study was to demonstrate that force-based selection method could be used in
practical scenarios.

3.7.1 Participants

Ten participants took part in the study. Their age ranged from 24 to 34 years (M = 28.2, SD = 2.7).
None of them participated in the previous studies. Three of them identified themselves as women and
seven as men. Eight of them were right-handed and two were left-handed. They all were experienced
mobile device users (M = 10 years, SD = 1.3). Six of them also owned a smartwatch (M = 1.6 years,
SD = 1.9). None of them had prior experience with force-based interaction. They all received U.S.
$15 for participating in the study.

3.7.2 Apparatus & Design

The study used the same apparatus as the previous studies (Section 3.3.2). It was a 2 × 5 within-
subjects design. The independent variables were method (slide-force, slide-force-slide) and block.
There were five short English phrases [130] per block. The dependent variables were the commonly
used words per minute (wpm) and error rate (%) performance metrics in text entry research [17]. In
summary, the design was: 10 participants × 2 methods × 5 blocks × 5 phrases = 500 phrases in
total.

3.7.3 Procedure

The study used the same procedure as the first study (Section 3.3.3), except for the tasks. During the
study, participants transcribed short English phrases from a set [130] using the two keyboards in a
counterbalanced order. A custom app displayed one random phrase at a time outside the smartwatch
area (Fig. 3.11). Participants were instructed to read and memorize the phrase, then transcribe it
as fast and as accurate as possible using either of the method. Error correction was recommended
but not forced. Once entered, the app automatically displayed the next phrase. This continued until
all phrases were entered. We enforced a ∼5 minute break between the conditions to avoid the ef-
fect of fatigue. We enabled participants to practice with the methods by entering five phrases with
each technique before the corresponding condition. These phrases were not repeated in the main
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study. After the study, participants completed a custom questionnaire to rate the performance of the
methods. They also took part in a brief interview session to discuss their experience in the study.

(a) Entry speed (wpm) (b) Entry speed (wpm) per block (c) Error rate (%)

Figure 3.10: (a) Average entry speed (wpm) of the two methods, (b) average entry speed (wpm)
across all blocks fitted to power trendlines, (c) average error rate (%) of the two methods. Error bars
represent ±1 standard deviation (SD).

3.7.4 Results

3.7.4.1 Entry Speed

An ANOVA failed to identify a significant effect of method on entry speed (F1,9 = 0.28, p = .61).
On average slide-force and slide-force-slide yielded 4.3 wpm (SD = 1.0) and 4.2 wpm (SD = 0.7),
respectively (Fig. 3.10a). However, there was a significant effect of block (F4,9 = 30.12, p < .0001).
Fig. 3.10b illustrates average entry speed of the two methods across all blocks.

3.7.4.2 Error Rate

An ANOVA failed to identify a significant effect of method on error rate (F1,9 = 0.86, p = .38).
On average SF and SFS yielded 2.2% (SD = 4.5) and 1.7% (SD = 3.7) error rates, respectively
(Fig. 3.10c). There was also no significant effect of block (F4,9 = 1.39, p = .26).

3.7.4.3 User Feedback

A Wilcoxon Signed-Rank test failed to identify significant effects of method on perceived speed
(z = −0.14, p = .89), accuracy (z = −1.26, p = .21), learnability (z = −1.29, p = .20), ease-
of-use (z = −1.0, p = .32), functionality of the features (z = 0, p = 1.0), confidence in using
the methods (z = −0.33, p = .74), and willingness to use the methods on their smartwatches
(z = −0.21, p = .83). Fig. 3.11c illustrates average user ratings of the two methods.

3.7.5 Discussion

Entry speed of the two methods were comparable. Besides, the 4.3 wpm is much lower than the
performance of the existing character-level methods, which were reported to yield between a 4.3 and
19.6 wpm entry speed [15]. These methods, however, used much larger keys by occupying up to
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(a) Slide-Force (b) Slide-Force-Slide (c) Average user ratings

Figure 3.11: A participant entering text with (a) slide-force and (b) slide-force-slide keyboards, and
(c) average user ratings of the two methods on a 5-point Likert scale (1–5: low–high). Error bars
represent ±1 standard deviation (SD).

85% of the screen [114] and/or evaluated in longer sessions and on much larger smartwatches. It
is also important to note that, we observed a significant effect of block on entry speed. Words per
minute with both techniques improved substantially in the last block compared to the first (17% and
23% improvements with slide-force and slide-force-slide, respectively). A post-hoc Tukey-Kramer
test identified these differences to be statistically significant. Fig. 3.10b illustrates average entry
speed of the two methods in all blocks fitted to power trendlines, where one can see that both slide-
force (R2 = 0.98) and slide-force-slide (R2 = 0.83) correlated well with the power law of practice
[34]. These suggest that learning occurred with both methods even in the short duration of the
study, thus possible that performance with the methods will improve further with practice. Many
participants also felt that their performance improved with practice. One participant (male, 30 years)
commented, “It took some time to get to used to it, but after that it was easy to use.” There was no
significant effect of method on error rate. Both methods were fairly accurate with about 2% error
rate, which is much lower than the 5–28% error rate reported for the existing character-level methods
for smartwatches [15]. Participants were mostly indifferent about the two methods in the post-study
questionnaire (Fig. 3.11c). However, we noticed that participants were split about which method
they preferred the most. One participant (female, 29 years) commented, “The split-force-split was
the fastest for me to use even through I hadn’t used it before.”, while another (male, 34 years) said,
“To sum up, slide-force is the best way to type for me.” However, many participants found both
methods difficult to learn. One participant (female, 24 years) commented, “They [both] are quite
hard to control how much force need to push when choose the letters.” These results suggest that
while the keyboards may not be appropriate as the primary method of text entry on smartwatches,
these could be used as extensions to the primary input method (which are predominantly predictive
with aggressive correction model, thus do not always enable out-of-vocabulary word entry [114])
for non-dictionary word entry or to enter short phrases (e.g., short response to a text message). Most
importantly, the fact that force input prevailed even in an extreme scenario like text entry indicate
that it can be effectively used an active mode of interaction on smaller devices.
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3.8 Conclusion
In this work, we investigated the possibility of using contact force as an active mode of interaction on
smartwatches, especially to enable the selection of smaller targets. We presented the results of three
user studies. The first identified the most comfortable range of force users can apply on smartwatches.
The second revealed that force input is significantly more effective in selecting smaller targets than
touch. Finally, the third study demonstrated that force could be effectively used in practical scenarios
by developing and comparing two new force-based character-level text entry techniques. In addition
to the means for demonstrating force input’s effectiveness, we see these keyboards as independent
contributions as they have much smaller footprints than the existing character-level methods and
users were relatively fast at learning these. We envision these keyboards being used as extensions
to predictive keyboards that disable out-of-vocabulary word entry due to their aggressive correction
models, to enable the entry of occasional non-dictionary words.

One limitation of the work is the studies reported here were conducted on simulated smartwatch
interfaces on a smartphone. While this is fairly common in the literature [41, 110, 94, 79] (also
discussed in Chapter 2), due to the absence of empirical evidence, it is unclear if the performance
recorded on a simulated smartwatch is generalizable to actual smartwatches. In the future, we will
explore different control-display mapping functions for force input. We will also use machine learn-
ing approaches to make the method more reliable. We also hope to evaluate the new keyboards in
longitudinal studies and augment them with predictive systems for faster text entry.
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Chapter 4

Editing & Formartting on Smartphones

4.1 Introduction
Text entry has become a vital part of our everyday life. Nowadays, we enter text not only on desktop
computers but also on the go on our mobile devices. While there is a rich body of work on text
entry and error correction on mobile devices, not much work focused on text editing or formatting.
However, with the increased use of mobile devices, developing efficient text editing and formatting
approaches are the next integral step in the progression of mobile text entry. Besides, text editing
requires effective approaches for precise cursor positioning and text selection, which can also benefit
error correction. This work defines text editing as the process of manipulating existing text with
modeless editing operations, including cut, copy, paste, and move [126], not to be confused with
error correction that involves correcting incorrect text or revision that involves rewriting parts of

Figure 4.1: A cut–copy–paste workflow with GeShort: the user (a) positions the cursor and double-
taps to initiate a selection, (b) positions the cursor and double-taps to complete the selection, (c)
swipes from the Space to “X” to cut the selected text, (d) swipes from the Space to “C” to copy the
selected text, (e) swipes from the Space to “V” to paste the selected text, (f) taps on a previously
cut (highlighted in red background) or copied (highlighted in green background) text on the floating
clipboard to paste it.
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existing text to improve its quality. Text formatting, in the context of this work, represents styling
existing text with bold, italicized, or underlined typeface.

Both text editing and formatting on mobile devices involve precisely positioning the cursor over
the text to be selected, long-tap (500–1,000 ms [40]) to enable the “edit mode”, which displays an
edit toolbar and two handles to adjust the selection range (see Fig. 4.2b), adjust the selection range by
dragging the handles, then select the intended task from the toolbar. If the intended task is not visible
in the toolbar (which is usually the case for formatting tasks), users have to go to a secondary drop-
menu by tapping on an icon, then select the option. Precise positioning of the cursor is difficult on
smartphones due to the “fat-finger problem” [132]. Prior studies showed that users frequently make
mistakes, requiring extra time for correction, when precisely positioning the cursor using touch [21].
The use of a dwell threshold (long-tap) and multiple menu selection actions also add to the time and
complexity of text editing and formatting on mobile devices. Performing these actions are even more
difficult when holding the device with one hand and interacting with the thumb of the same hand,
which is one of the most common postures for mobile interaction [8]. Mobile users frequently use
one hand to hold and enter text on mobile devices in situational impairments when the other hand
is unavailable, such as when holding a coffee cup or a sandwich with one hand, performing dual
tasks (e.g., navigating a desktop browser when texting, etc.), holding the hand of a toddler, or when
relaxing on a couch. People who cannot use both hands due to a disability or amputation also use
one hand to interact with mobile device. However, we do not include this population in this research.

Further, existing mobile text editing methods do not fully support delayed, repeated, and batch
editing, thus not always possible to cut/copy text for use in a later editing episode (delayed pasting),
cut/copy chunks of text for pasting in a preferred sequence (repeated pasting), or paste all cut/copied
text with a single action (batch pasting). Instead, most methods require users to repeatedly perform
the select-cut/copy-reposition-paste action sequence. Recently Gboard, the default Google keyboard
[93], introduced a clipboard feature that stores the last five cut/copied text, enabling users to paste
those later in a preferred sequence. While this feature supports delayed and repeated pasting (but
not batch pasting), accessing the clipboard and locating its content is not straightforward, rather
time-consuming and tedious, discussed in Section 4.3.

We propose GeShort, a method for one-handed text editing and formatting on mobile devices
using gestural shortcuts. GeShort facilitates direct cursor positioning by using three simple rules,
one-handed text editing and formatting with gestural shortcuts, which are inspired by the commonly
used keyboard hotkeys, and delayed, repeated, and batch editing using a floating clipboard. The
remainder of this Chapter is organized as follows. First, we review the existing works in the area and
discuss the basic and advanced editing and formatting features on current mobile systems. We then
present GeShort’s text selection, editing, and formatting approaches. We evaluate GeShort in two
user studies by comparing its basic and advanced features with the default Google keyboard’s basic
and advanced features. Finally, we conclude the work with reflections on future directions.

4.2 Related Work
There are not much works focused on text editing or formatting on mobile devices. Fuccella, Isokoski,
and Martin [60] enabled text editing by performing one and two-finger gestures on the screen. In an
evaluation, this method yielded 13–24% faster task completion time than Android OS 2.3’s editing
widget. In a follow-up work, Fuccella and Martin [61] used similar gestures to enable bimanual text
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editing. This method was 2% faster than Android OS 5.0’s editing widget in a user study. Zhang
and Wobbrock [142] used similar gestures to enable text editing with one and both hands. In a study,
the one-hand approach yielded a 24% faster and the two-hand approach yielded a 17% faster task
completion time than Android OS 9.0’s editing widget. These methods, however, do not support text
movements and use unfamiliar gestures that could be difficult to discover and learn [32]. In general,
these works establish gestural interaction as an effective method for manipulating text on mobile
devices. These works suggest that multi-finger gestures result in a faster task completion time than
one-finger gestures but tend to increase physical efforts.

Ando et al. [7] developed a tap and tilt hybrid method with which users place the cursor at the
beginning of the text, hold the “C” key and tilt the device to adjust the selection range, then release
the key to copy the selected text. In a follow-up work, Ando et al. [6] replaced tilts with finger
slides, where users use the keyboard as a trackpad to adjust the selection range. Both methods were
reported to perform better than the Android OS 8.0’s editing widget. But the actual performance of
the methods are indeterminant due to the use of unconventional evaluation protocol and performance
metrics. Besides, these methods do not support common editing tasks, such as cutting, pasting, or
moving text. Roth and Turner [117] used the bezel of a device to enable text editing. With this
method, users position the cursor at the beginning of the text, initiate a gesture from a specific area of
the bezel to indicate cut or copy, then lift the finger at the end of the text to complete the corresponding
task. In an evaluation, this method was 36% slower than the Apple iOS 2.0’s editing widget. Chen
et al. [40] adapted this method to enable cross-application copy-paste, where it yielded a 30% faster
copying time than Android OS 4.1.2’s editing widget. The study, however, used a mix of 15, 18, 21
sp sized fonts, two of which were larger than the recommended 16 sp [83]. Hence, it is unclear how
the method would perform in real-world scenarios. Schweigert et al. [120] proposed using knuckle
gestures for text editing tasks. Gutwin et al. [68], in contrast, augmented three push buttons on a
smartphone case to enable text editing by performing chords. These methods were not evaluated
in user studies. Alvina et al. [4] enabled text formatting by performing gestural shortcuts above
the keyboard. Fennedy et al. [58] adapted actual keyboard hotkeys on a virtual keyboard, where

Table 4.1: Mobile text editing and formatting methods with their reported performance gains com-
pared to the legacy editing and formatting features of smartphones. Notice that none of these methods
support all commonly used editing tasks (i.e., copying, pasting, cutting, moving).

Reference Interaction Editing Formatting Baseline Gain
Speed Accuracy

Chen et al. [40] Bezel gestures Partial No Android OS 30% −3%
Zhang and Wobbrock [142] One-hand gestures Partial No Android OS 24% NA
Fuccella, Isokoski, and Martin [60] One-hand gestures Partial No Android OS 13-24% NA
Zhang and Wobbrock [142] Two-hand gestures Partial No Android OS 17% NA
Fuccella and Martin [61] Two-hand gestures Partial No Android OS 2% NA
Roth and Turner [117] Bezel gestures Partial No iOS −36% 0%
Ando et al. [7] Tap and tilt Partial No Android OS NA NA
Ando et al. [6] Tap and swipe Partial No Android OS NA NA
Gutwin et al. [68] Two-hand chording Partial Yes NA NA NA
Fennedy et al. [58] Two-hand hotkeys Partial Yes NA NA NA
Schweigert et al. [120] Knuckle gestures Partial Yes NA NA NA
Alvina et al. [4] One-hand gestures No Yes NA NA NA
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users tap on the keys in a sequence or with two thumbs. These methods were also not evaluated in
user studies. Findings of these works suggest that exploiting device holding position and posture or
external hardware and attachments do not result in a performance gain in short exposures. However, it
is unclear whether these methods will improve performance with practice since neither of these were
evaluated in longitudinal studies. Table 4.1 presents existing text editing and formatting methods for
mobile devices and their performance gains reported in the literature.

Some have studied cursor positioning with mobile devices. Scheibel et al. [119] developed a
virtual (joy)stick controller to control the movement of the cursor. Arif et al. [21] developed a smart
cursor positioning system to facilitate error correction. Albanese et al. [2] proposed displaying di-
rectional arrows near the cursor to enable adjusting its position by tapping on them. These methods,
however, were not compared with standard methods. In a different line of research, Zhao et al. [143]
enabled text editing with speech commands. Eady and Girouard [56] developed a deformable pro-
totype to demonstrate cursor control by bending the corners of the device. Le et al. [92] elicited
(mostly) back-of-device gestures for the most important shortcuts for smartphones. Darbar et al.
[49] used a smartphone as a trackpad, conduit for keyboard shortcuts, air-mouse, and ray casting
device to enable cursor positioning in augmented and virtual reality. Pandey, Alizadeh, and Arif
[111] developed a predictive system for number editing on smartphones. Some have also developed
methods to facilitate error correction on mobile devices [86, 121, 21, 18, 9]. These, however, are
outside the scope of this work.

4.3 Default Text Editing and Formatting Behaviors
Most mobile operating systems and third-party virtual keyboards use similar text editing features.
Here, we focus mostly on the Google Android OS and its default keyboard, Gboard [93], behaviors.

Text Selection. Android enables users to directly position the cursor by touching the screen. The
cursor is placed where the finger lands. Sliding the finger in any direction moves the cursor along
with the finger within the text. A magnifier window appears to display the text under the finger to
facilitate precise target selection (Fig. 4.2a). Newer Android devices enable users to place the finger
on the Space and slide it left or right to move the cursor horizontally within the text [43]. Some Apple
devices enable using the whole keyboard as a trackpad by long-tapping or applying extra force on
the Space [106]. Long-tapping on text for 500–1,000 ms automatically selects the word under the
finger and displays two text selection handles [40] (Fig. 4.2b). Users then can adjust the handles to

(a) Magnifier window (b) Text selection handles and the edit menu (c) Gboard’s text editing layout

Figure 4.2: Some cursor positioning, text selection, and editing features on Android-based devices.
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modify text selection. Gboard also includes a dedicated text editing keyboard layout to enable users
to move the cursor and select text with virtual keys (Fig. 4.2c).

Text Editing. Text editing on mobile devices is straightforward. Upon selection of text, a menu
containing the options cut, copy, and paste appears above the text (Fig. 4.2b). Users then select an
option to perform the corresponding task. Users could also use the dedicated keyboard layout for
editing (see Fig. 4.2c) to perform these tasks. To reposition (or move) the text, users long-tap on
selected text, then move the finger to the desired location.

Text Formatting. Most mobile operating systems do not provide dedicated methods for text for-
matting, instead rely on the developers to include text formatting features in applications. Some
applications display a text formatting tool above the virtual keyboard to bold, italicize, and underline
the selected text (Fig. 4.3a). Web developers could also force Android to display some formatting
options in the edit menu (Fig. 4.3b), accessed by tapping on the kebab menu icon ( ...).

Default Clipboard. Gboard has recently included a clipboard feature to enable multiple cuts, copies,
and pastes [118]. Once this feature is enabled from the settings, it displays the last cut or copied text
in the suggestion bar. It also stores the last five cut and copied text for users to paste (Fig. 4.3c).
This feature is particularly useful when users want to first cut or copy multiple chunks, then paste
them when done (rather than repeated “cut/copy-paste” sequences). To access the recorded chunks,
users expand the keyboard menu by pressing an arrowhead icon (<), then select the clipboard option.
We reviewed the most popular virtual keyboards for smartphones, including Google Gboard, Apple
iOS keyboard, Microsoft Swiftkey, Samsung keyboard, Fleksy, Grammarly, and Typewise, by using
these on our devices for several days. It revealed that this feature is not supported by all keyboards.
Table 4.2 presents an excerpt of the findings.

4.4 GeShort Text Editing and Formatting Behaviors
We collected data from a prior study [18], where participants were asked to transcribe text using
a virtual keyboard. We also conducted a new pilot study with 12 participants (3 female, 9 male),

Table 4.2: Availability of advanced clipboard features in popular virtual keyboards. “NA” signifies
not available.

Function Gboard Microsoft
SwiftKey

Default
Apple iOSAndroid Apple iOS Samsung

Clipboard NA NA NA

Clipboard Buffer NA NA NA
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(a) Text formatting on Outlook for Android (b) Android’s text formatting options (c) Gboard’s clipboard with all recorded text

Figure 4.3: Text formatting features in third-party applications and on Android-based devices, and
the new clipboard feature of Gboard.

M = 27.92 years (SD = 4.87), where participants selected random chunks of text on a smartphone.
After the pilot study, participants discussed their mobile text editing and formatting strategies and
challenges. Based on the cursor positioning patterns identified in the studies, GeShort uses simple
cursor positioning rules, and gesture-based cursor movement, text selection, editing, and formatting
options, as well as a floating clipboard to enable faster and more accurate text editing and formatting
on mobile devices.

4.4.1 GeShort Text Selection

We developed three simple rules to facilitate precise target selection.

1. This rule is based on the observation that users usually cut or copy from the beginning of
one word to the end of the same or a different word. When the finger lands within three
characters from the beginning or the end of a word (see Section 4.4.2), the cursor is placed at
the beginning or the end of the respective word. When both the beginning of one word and
the end of another word are within the three-character threshold:

1.1 The cursor is placed at the beginning of the respective word if it is the first cursor place-
ment for text selection.

1.2 The cursor is placed at the end of the respective word if it is the last cursor placement
for text selection.

2. This rule is based on the observation that for words with prefixes or suffixes, users tend to cut,
copy, or delete the prefix or suffix. If the finger lands closer to the middle of a word that is
either a gerund (words with “-ing”), compound (blends of multiple words, like “guessability”
is a blend of “guess” and “ability”), plural form of a word (like “boxes”), or contraction (like
“couldn’t”), the cursor is placed between the prefix and the suffix. For example, if the finger
lands closer to the middle of the word “guessability”, the cursor is placed between “guess”
(prefix) and “ability” (suffix). Our experimental prototype uses a dictionary to identify these
words.

3. In all other cases, the method behaves like the default cursor positing method, described in
Section 4.3.
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GeShort enables users to move the cursor by one character at a time by swiping left and right
(horizontal movement), and one line at a time by swiping up and down (vertical movement) on the
text area. For text selection, users first position the cursor at the beginning of the intended text and
double-tap to initiate selection. Users then re-position the cursor at the end of the text and double-tap
to confirm the selection (Fig. 4.1). With this approach, users have to precisely position the cursor to
indicate the start and the end of a selection, but the double-taps to confirm the selection do not have
to be precise, rather tapping closer to the cursor is sufficient (within 20 pixels). We acknowledge
that some mobile applications use double-taps to enable the selection of a whole word or a chunk
of text, and to trigger the zoom-in feature on a document or website. We resolve the first conflict by
enabling the selection of a whole word or chunk of text by long-tapping (500 ms) on the text. The
second conflict can be avoided by tapping on the gutter or unused areas of a document or a website
(i.e., not on text). To cancel or re-start a selection process, users double-tap on the cursor again.
Algorithm 1 describes GeShort’s text selection procedure.

Algorithm 1: GeShort Cursor Positioning
Input: Touch position t
Function CursorPlacement(t):

cdefault ← default cursor position closest to the touch t
if cdefault points to whitespace then

return cdefault
end
w ← the word that contains cursor cdefault
sw, ew ← beginning and end cursor coordinates of word w
if pixels(cdefault − sw) < 20 then

return sw
end
else if pixels(ew − cdefault) < 20 then

return ew
end
else if w is gerund then

return ew − 3
end
else if w is plural then

if w ends with ‘s’ then
ew − 1

end
else if w ends with ‘es’ then

ew − 2
end

end
else if w is portmanteau or contraction then

s← split point of the words w
return s

end
return cdefault
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4.4.2 Three-Character Threshold

The three character threshold in Rule (1) is picked based on the mean touch contact area of the thumb
(w: 6 × h: 7.2 mm) and the index finger (w: 5.5 × h: 6.7 mm) [134], which occludes about three
characters in the default font type and size on most smartphones. Android OS, for instance, use the
font Roboto at 18 sp, which takes on average w: 2.3 × h: 3.0 mm screen per character.

Since this threshold and the suffix-prefix cursor positioning in Rule (2) seldom forces users to
swipe left or right to move the cursor to the right position (when an incorrect position is selected), we
conducted a keystroke-level analysis to find out whether correction efforts outweigh their benefits.
Correcting cursor position with GeShort can be described in the following keystroke-level model
tP + (n × tK), where tP is the time (ms) to position the cursor with two taps, tK is the time to
perform a swipe gesture, and n represents character offset, which is the total number of characters
between the current and the target position. The model does not account for homing time (tH , the
time to move the finger to the target) and the mental preparation time (tM , the time to visually scan
the display, and prepare for the next task) for simplicity as these parameters are difficult to gather and
separate from other parameters in user studies. Since these parameters are likely to be comparable
between the methods, the model is still capable to estimate performance differences (%) between
them.

We conducted a pilot study to collect the parameter values. Six participants (M =26.7 years, SD
= 6.1) took part in the pilot study. Four of them identified as female and two as male. They were
all experienced smartphone users (M = 8.33 years of experience, SD = 2.3). In the study, they held
a smartphone with their dominant hand, then performed tap and the two swipe gestures using the
thumb of the same hand. In order to collect direct cursor positioning time with the default method,
they also precisely positioned the cursor at randomly selected positions in a paragraph using the same
holding posture. Each task were performed 12 time, with ∼5 seconds breaks in between (6 × 12 ×
4 = 288 data points). The study identified the following parameter values: tP = 320, tK = 600.
Precise cursor positioning with the default method took on average 2,166 ms (SE = 356) including
correction efforts (53% of all attempts required repositioning the cursor to the correct position). We
then predicted cursor positioning and adjustment time with GeShort with n = 0 to 3. We did not
consider an offset over three characters (n > 3) since the average word length in the English language
is about 5 characters [109, 28], which, combined with Rules (1) and (2), assures that the offset will
almost never be over three characters. Table 4.3 presents the predicted positioning and adjustment
time with GeShort, where one can see that cursor re-positioning with three character offset is still
2% lower than the average 2,166 ms cursor positioning time with the default method. This further
motivates the work.

4.4.3 GeShort Text Editing and Formatting

GeShort uses gestural shortcuts, designed based on keyboard hotkeys, for text editing and formatting.
Table 4.4 presents these shortcuts and their desktop counterparts. These shortcuts replace the “Ctrl”
or “Cmd” of keyboard shortcuts with a gesture initiated from the Space. For example, to copy a
selected chunk of text, users swipe from the Space to the “C” key. Since these gestural shortcuts are
initiated from the Space (Figs. 4.1, 4.5), they do not interfere with gesture-based text entry techniques
like ShapeWriter or Swipe [141, 113]. Users can undo the last performed task by performing the
undo shortcut (Space→Z).
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Table 4.3: Predicted cursor positioning and adjustment time with GeShort, together with estimated
performance gain in relevance to the average cursor positioning time with the default method.

Character
Offset

GeShort
tP + (n× tK)

Performance
Gain

n = 0 320 ms 85%
n = 1 920 ms 58%
n = 2 1,520 ms 30%
n = 3 2,120 ms 2%

Table 4.4: Proposed gestural shortcuts for text editing and formatting and their desktop counterparts.
A ‘→’ signifies a gesture.

Shortcuts Cut Copy Paste Bold Italic Underline Undo Redo
Keyboard Ctrl + X Ctrl + C Ctrl + V Ctrl + B Ctrl + I Ctrl + U Ctrl + Z Ctrl + Y
Gestures Space→X Space→C Space→V Space→B Space→I Space→U Space→Z Space→Y

Figure 4.4: Gestural shortcuts to (a) bold, (b) italicize, and (c) underline text, respectively. The
shortcuts are initiated from the Space, thus do not interfere with gesture-based text entry techniques
like ShapeWriter or Swipe.

4.4.4 GeShort Move Function

GeShort enables users to move text to a desired position, a feature not supported by most alternative
approaches. Upon selection of a chunk of text, users can convert the virtual keyboard to a trackpad
by holding the finger on the Space. When enabled, the keyboard is greyed out with all keys disabled.
Users then move the finger over the trackpad to reposition the cursor to the intended position, and
lift the finger to move the selected text to the cursor position. The design of this function is inspired
by the drag and drop feature on desktop platforms, which enables users to “grab” an object to “drag”
it to a different location. This is because, research [27] showed that exploiting specific knowledge
that users already have of other domains (i.e., (re)using metaphors) facilitates learning.
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Figure 4.5: Moving text with GeShort: the user (a) selects text, (b) long-taps on the Space to turn
the keyboard into a trackpad, (c) moves the finger over the trackpad to reposition the cursor, (d) lifts
the finger to place the selected text to the cursor position.

4.4.5 GeShort Floating Clipboard

GeShort provides easy access to the clipboard to facilitate delayed, repeated, and batch editing tasks.
Unlike the default clipboard, which users have to access by extending the keyboard options, GeShort
automatically displays a clipboard icon when it has cut or copied text (Fig. 4.6). Users tap on the icon
to see snippets (i.e., the first nine characters of the text) of the content in a bar, then tap on a snippet
to paste the corresponding text. Once opened, the clipboard bar remains visible until users tap on
the icon again to hide it. The bar distinguishes cut and copied text using red and green backgrounds,
respectively. This is based on prior research that showed that distinguishing different types of text
editing actions using different colors improves usability and performance [3, 20]. Users can swipe
left and right on the bar to access cut and copied text that are not visible in the bar. Users can extend
a snippet by long-tapping on it. The text shrinks back to preview size upon lifting the finger to
accommodate more excerpts in the bar. GeShort supports the following gestural shortcuts to afford
users better control of its behavior, which are not supported by the default clipboard: Space→“V”
pastes the last cut or copied text, Space→Enter pastes all items from the clipboard (to enable batch
pasting with one action), and Space→Delete clears the clipboard.

4.5 User Study 1: Default vs. GeShort
We conducted a user study to compare the basic editing (cut, copy, paste, move, and delete) and
formatting (bold, italic, underline) tasks with the default Android keyboard Gboard and GeShort.
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Figure 4.6: Different states of GeShort’s floating clipboard: (a) the clipboard icon is not visible
when it is empty, (b) the clipboard icon appears when it has content, (c) tapping on the icon displays
recently cut and copied text in a bar above the keyboard, highlighted in red and green backgrounds,
respectively.

4.5.1 Apparatus

We used a Motorola Moto G5 Plus smartphone (150.2× 74× 7.7 mm, 155 g) at 1080× 1920 pixels
running on Android OS 7.0 in the user study. We developed a custom application with Android
Studio 3.5.1, SDK 24 to display the tasks and record all interactions with timestamps. The floating
clipboard was disabled in this study since only basic editing tasks were investigated. The application
had four parts: a paragraph at the top, followed by a section presenting one task at a time, a text area
to paste the cut/copied text, and a virtual keyboard (Fig. 4.7).

4.5.2 Participants

Twelve participants aged from 20 to 32 years (M = 24.83, SD = 4.13) took part in the study. They
were recruited through social networking platforms, e-mailing lists, and word of mouth. Eight of
them identified themselves as female and four as male. All of them were experienced mobile users (M
= 8.04 years of experience, SD = 3.84). Ten of them were owners of Apple iOS-based smartphones,
on which they used either the default Apple keyboard (N = 8) or Gboard (N = 2). The remaining
two were Android OS-based smartphone owners, on which they used either the default Samsung
keyboard (N = 1) or Gboard (N = 1). They all were proficient in the English language (native,
bilingual, or advanced-level, moderate speakers of the language). All of them were right-handed.
They all received U.S. $15 for participating in the study. Fig. 4.7 illustrates the custom applications
and two volunteers participating in the study.

4.5.3 Design

The study used a within-subjects design with two independent variables: 1) method with two levels:
default Gboard and GeShort and 2) task with two levels: editing and formatting. The design was as
follows:
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Figure 4.7: The device with GeShort (left) and the default method (right), and two volunteers par-
ticipating in the study.

4.5.3.1 Task Selection

We carefully selected the experimental tasks to increase the external validity of the study. In the
editing phase, participants performed sixteen cut, copy, move, and delete tasks with each method in
randomized order. While in the formatting phase, they performed sixteen bold, italic, and underline
tasks with each method in randomized order. The text to be edited or formatted were equally split
between word-level and phrase-level selection tasks, the former composed of 1–3 words and the
latter composed of multiple lines of text. Word-level and phrase-level selection tasks were further
divided into mid-selection and start/end-selection tasks, the former required selecting text within a
word and the latter required selecting text from/to the start/end of a word. For the tasks, we generated
eight random paragraphs using a freely available service1. We used random paragraphs to reduce the
effects of the content and the context of the paragraphs on the selection tasks. Using excepts from
existing sources could have introduced a confound since participants’ familiarity to the text cannot
be predicated ahead of the study. Table 4.5 presents four examples of these tasks. Table 4.6 presents
statistics about the paragraphs.

4.5.3.2 Performance Metrics

The dependent variables were the following performance metrics.

• Task completion time (s) is the average time (in seconds) participants took to complete one
task. For deeper analysis, we divided task completion time into selection time and action
time, representing the average time to select text and the average time to perform an editing or
formatting task, respectively. Hence, task completion time = selection time + action time.

1Random Paragraph Generator: https://randomwordgenerator.com/paragraph.php.

https://randomwordgenerator.com/paragraph.php
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Table 4.5: Examples of experimental tasks of different selection patterns.

Selection Level Task Example

Word-level start/end-selection Copy

Word-level mid-selection Cut

Phrase-level start/end-selection Move

Phrase-level mid-selection Bold

• Errors per task represents the average character errors committed per selection task. This
metric is comparable to the minimum string distance measure in text entry research that rep-
resents the similarity between two text sequences using the Levenshtein distance algorithm
[95]. The distance is defined as the minimum number of primitive operations (namely inser-
tion, deletion, and substitution) needed to transform a cut or copied text to the text presented
in the task [122].

4.5.4 Procedure

The study was conducted in a quiet room, one participant at a time. Upon arrival, we explained the
research and collected their informed consent forms and demographics. Participants sat in front of
a desk. They were asked to hold the device with the dominant hand in a comfortable position and
interact with the thumb of the same hand. We then demonstrated the method used in the first condi-

Table 4.6: Statistics about the randomly generated paragraphs used in the studies.

Paragraph ID Total Character Total Word Total Line

1 419 78 10
2 445 84 11
3 498 92 12
4 519 88 13
5 398 80 10
6 425 83 11
7 464 89 13
8 496 90 12

Mean 458 86 12
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tion (the conditions were counterbalanced) and asked them to practice all features by performing at
least two tasks per feature. They could extend the duration of the practice by one additional task per
feature upon request. We then started the first condition, where they were asked to perform the tasks
as fast and accurate as possible. The custom application displayed one task at a time. In addition to
written instructions, the relevant parts of the paragraphs were highlighted in different colored font to
reduce the visual scan time: green for copy and move, red for cut and delete. Formatting tasks were
highlighted in a purple-colored font (Table 4.5). After completing a task, participants tapped on the
Next key to see the next task. Correcting selection errors was not required. After they completed all
tasks in the condition, we demonstrated the next method, asked them to practice with it, then started
the next condition. We asked participants to practice with both methods, although they were famil-
iar with Gboard, to make sure they know how to use the default editing features of the keyboard. In
the practice, participants used all features by performing at least two tasks per feature (see Section
4.5.3.1). Participants were instructed to read the presented task carefully before initiating a task. The
tasks used in the training were not repeated in the main study.

During the study, we did not restrict participants from using any default features, including the
clipboard or cursor movements by swiping on the space key. Yet, participants almost never used
these features. We enforced a 2-minute break after each condition to avoid the effect of fatigue.
Participants could extend the duration of the breaks by 2 extra minutes upon request. After the study,
participants completed the NASA-TLX questionnaire to rate the methods’ perceived workload [73]
and a custom questionnaire to rate the perceived speed, accuracy, ease-of-use, integration of the
functions, and willingness-to-use on a 5-point Likert scale. For analysis, we calculated the raw TLX
scores by individual sub-scales, which is a common practice in the literature [72].

All researchers involved in this study were fully vaccinated for COVID-19. All participants were
pre-screened for COVID-19 symptoms during the recruitment process by a researcher, and on the
day of the study by the host institute. Both the researcher and the participants wore face coverings
and sanitized their hands before a session. The researcher also maintained a 3-feet distance from
the participants at all times. All devices and surfaces were disinfected before and after each session.
This protocol was reviewed and approved by the UC Merced Institutional Review Board (IRB).

4.5.5 Results

A complete study session took about 60 minutes, including demonstration, questionnaires, and
breaks. A Shapiro-Wilk test revealed that the response variable residuals were normally distributed.
A Mauchly’s test indicated that the variances of populations were equal. We did not exclude any out-
liers from the analysis. We used a repeated-measures ANOVA for the quantitative within-subjects
factors and a Wilcoxon Signed-Rank test for the questionnaire data.

4.5.5.1 Task Completion Time

An ANOVA identified a significant effect of method on task completion time (F1,11 = 17.29, p <
.005). On average, the default and GeShort took 10.56 s (SE = 0.20) and 8.99 s (SE = 0.20) to
complete a task, respectively. The effects on selection time (F1,11 = 11.00, p < .01) and action time
(F1,11 = 13.87, p < .005) were also statistically significant. The 5.7 s and 6.9 s selection time values
are higher than the predicted values in Table 4.3 as the latter did not account for the homing or the
mental preparation time. The 17% performance gain identified here falls between the gains predicted
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Figure 4.8: The average overall, editing, and formatting task completion time with the two methods
segmented in selection and action time. Error bars represent ±1 standard error (SE).

for 2–3 character offsets. We further analyzed the data after filtering for editing and formatting tasks,
where an ANOVA identified significant effects of method on both editing (F1,11 = 5.44, p < .05)
and formatting (F1,11 = 76.97, p < .0001) task completion time. Fig. 4.8 illustrates the average
overall, editing, and formatting task completion time split into selection and action time.
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Figure 4.9: The average overall, editing, and formatting errors per task with the two methods. Error
bars represent ±1 standard error (SE).

4.5.5.2 Errors per Task

An ANOVA failed to identify a significant effect of method on errors per task (F1,11 = 0.39, p =
.54). On average the default and GeShort caused 2.19 (SE = 0.46) and 1.72 (SE = 0.33) errors
per task, respectively. We also failed to identify significant effects when filtered the data for editing
(F1,11 = 0.44, p = .52) and formatting (F1,11 = 0.04, p = .84) tasks. Fig. 4.9 illustrates the average
overall, editing, and formatting errors per task.

4.5.5.3 Perceived Workload

A Wilcoxon Signed-Rank test identified a significant effect of method on physical demand (z =
−2.14, p < .05), effort (z = −2.52, p <= .05), and frustration (z = −2.95, p < .005). However,
no significant effect was identified on mental demand (z = −0.28, p = .78), temporal demand
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(z = −0.53, p = .69), or performance (z = −0.71, p = .48). Fig. 4.10a illustrates median raw
NASA-TLX ratings of both methods.

4.5.5.4 Usability

A Wilcoxon Signed-Rank test identified a significant effect of method on perceived speed (z =
−2.71, p < .01), ease-of-use (z = −2.39, p < .05), function (z = −2.38, p < .05), and willingness-
to-use (z = −2.7, p < .01). However, no significant effect was identified on perceived accuracy
(z = −1.85, p = .06). Fig. 4.10b illustrates median user ratings of both methods.

(a) Raw NASA-TLX (b) Usability

Figure 4.10: Median user ratings of both methods on perceived workload and usability question-
naires. Error bars represent ±1 standard error (SE).

4.5.6 Discussion

Participants were significantly faster with GeShort than Gboard (15% faster). This performance gain
cannot be directly compared with the performance reported in the literature (Table 4.1) since those
works were evaluated with much simpler tasks (did not consider all selection scenarios described in
Section 4.5.3.1), compared only a subset of edit options (did not compare cut or move), or did not
support one-handed interactions. An analysis revealed that participants performed both text selec-
tion and editing/formatting tasks significantly faster than the default method (11% and 17% faster,
respectively), which suggests that both the proposed selection and editing/formatting approaches
contributed to the faster task completion time of GeShort. When filtered the data for editing and for-
matting tasks, we found out that both types of tasks were performed significantly faster with GeShort
than the default method (11% faster editing and 22% faster formatting). Error rates of the two meth-
ods were not statistically significant.

The results of subjective feedback are also encouraging. In the perceived workload question-
naire (Fig. 4.10a), participants found GeShort to be significantly less physically demanding, which
suggests that it better facilitates text editing and formatting with one hand than the default method.
One participant (female, 20 years) commented that the default method “was more physically and
mentally challenging” because its selection and editing/formatting features were not suited for one-
handed interaction. Another participant (female, 31 years) praised GeShort saying that it “was more
precise in terms of text selection.” They also felt that the default method required significantly more
effort, causing significantly more frustration performing the tasks. One participant (female, 26 years)
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commented, “frustration occurred mostly when selecting with Google method.” Participants found
both methods somewhat comparable in terms of metal and temporal demands.

In the usability questionnaire (Fig. 4.10b), participants found GeShort to be significantly faster
and easier to use than the default method. One participant (female, 20 years) commented, “The
underline, bold, italic in GeShort was awesome! As someone who edits papers and writes essays on
my phone I would actually use underline and such more often.” They felt that various functions were
much better integrated in GeShort than the default method, making it substantially easier to use than
the baseline. One participant (female, 26 years) commented that “[various editing] functions [are]
a lot easier to use with GeShort.” As a result, participants preferred using GeShort on their mobile
devices significantly more than the default method.

4.6 User Study 2: Default vs. GeShort Clipboard
We conducted a second user study to compare the advanced clipboard features (delayed and repeated
pasting from the clipboard) of the default Android keyboard Gboard and GeShort.

4.6.1 Apparatus & Participants

The study used the same apparatus as the first study (Section 4.5.1). Twelve new participants took
part in this study. They were recruited through social networking platforms, e-mailing lists, and
word of mouth. Their age ranged from 18 to 31 years (M = 22.30, SD = 3.42). Six of them identified
themselves as female and six as male. All of them were experienced mobile users (M = 9.46 years of
experience, SD = 4.26). They all were owners of Apple iOS-based smartphones, on which they used
the default Apple keyboard. All of them were proficient in the English language (native, bilingual,
or advanced-level speakers of the language). Eleven of them were right-handed mobile users, while
one was left-handed. They all received U.S. $15 for participating in the study. Fig. 4.11 illustrates
the custom application and two volunteers participating in the study.

Figure 4.11: The experimental device with GeShort and the floating clipboard (left) and the default
clipboard (right), and two volunteers using the respective methods in the second user study.
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4.6.2 Design & Procedure

The study used a within-subjects design with one independent variable method with two levels:
default Gboard and GeShort. The design was as follows:

12 participants ×
2 methods (default, GeShort), counterbalanced × 20 tasks
= 480 clipboard tasks in total.

4.6.2.1 Task Selection

Like the first user study, we carefully selected the experimental tasks to increase the external va-
lidity of the study. In the study, participants performed twenty clipboard tasks with each method
in randomized order. Four different types of tasks were selected: 1) cut/copy, then paste from the
suggestion bar, 2) cut/copy, type a word, then paste from the clipboard, 3) paste existing entries from
the clipboard, 4) paste the same text 2–5 times (repeated paste). These tasks were selected to repli-
cate real-life scenarios. For example, assume a user copied an address to share with a friend via text
message. She could either paste it immediately (task 1), paste it after typing a message like “here’s
the address” (task 2), share the address later from the clipboard (task 3), or share it with multiple
friends (task 4). To avoid potential confounding factors, the experimental tasks involved only one
word that users could select by long-tapping on it (to eliminate the need for precise target selection),
and pre-populated the clipboard with five words (to reduce the effect of visual scan time). Table 4.7
presents examples of these tasks.

4.6.2.2 Performance Metrics

The dependent variables were the task completion time and the errors per task performance metrics
described in Section 4.5.3.2. However, unlike the first study, we did not split the task completion
time by actions as performing these tasks required performing different numbers and combinations
of actions.

4.6.2.3 Clipboard-specific Analysis

In the study, only the treatment group was allowed to use the gestural shortcuts, while the control
group used the default selection methods. Hence, the above results present the combined benefits
of the clipboard and the gestural shortcuts. We conducted a deeper analysis to compare only the
performance of the two clipboard methods. For this, we filtered the data for the tasks that do not
require using the shortcuts for text selection and editing, namely tasks 3 and 4 (50% of the total data).
An ANOVA identified a significant effect of clipboard method on task completion time (F1,11 =
54.65, p < .0001). On average the default and the floating clipboard took 4.64 s (SE = 0.2) and 2.00
s (SE = 0.13) to complete a task, respectively. An ANOVA failed to identify a significant effect of
clipboard method on errors per task (F1,11 = 0.00, p = .95). Both clipboard methods caused about
0.2 errors per task.
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Figure 4.12: Average task completion time (s) per clipboard task. Error bars represent ±1 standard
error (SE)

4.6.2.4 Perceived Workload

A Wilcoxon Signed-Rank test identified a significant effect of method on mental demand (z =
−2.20, p < .05), physical demand (z = −2.81, p < .01), performance (z = −2.67, p < .01),
effort (z = −2.40, p <= .05), and frustration (z = −2.61, p < .01). However, no significant
effect was identified on temporal demand (z = −0.93, p = .35). Fig. 4.13a illustrates median raw
NASA-TLX ratings of both methods.

4.6.2.5 Usability

A Wilcoxon Signed-Rank test identified a significant effect of method on perceived speed (z =
−3.13, p < .005), ease-of-use (z = −2.99, p < .005), function (z = −2.74, p < .01), and
willingness-to-use (z = −2.65, p < .01). However, no significant effect was identified on perceived
accuracy (z = −1.93, p = .05). Fig. 4.13b illustrates median user ratings of both methods.

(a) Raw NASA-TLX (b) Usability

Figure 4.13: Median user ratings of both methods on perceived workload and usability question-
naires. Error bars represent ±1 standard error (SE).
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4.6.3 Discussion

Participants were significantly faster with GeShort than the default method (34% faster). They were
also significantly faster when using only the clipboard features (35% faster). A deeper investigation
revealed that participants were significantly faster in performing in-text pasting (task 2), delayed
pasting (task 3), and repeated pasting (task 4) with GeShort than the default method (33%, 64%,
and 51% faster, respectively), while performance of immediate pasting tasks (task 1) was relatively
comparable between the methods (Fig. 4.12). Error rates of the two methods were not statistically
significant. These results suggest that GeShort better facilitates performing advanced editing tasks
than the most current features of the state-of-the-art.

Results of subjective feedback also support this. In the perceived workload questionnaire (Fig. 4.13a),
participants found GeShort to be significantly less demanding both mentally and physically. They
also found the default method significantly more demanding than GeShort in terms of effort. They
felt that the reduced mental and physical demands and effort significantly improved their perfor-
mance with GeShort. One participant (female, 22 years) summarized, “It took longer [with the
default method] than anticipated! I never realized how many steps I had to take to do copy and
paste. Using the GeShort method was a lot of simpler than imagined. The more I used it, the easier
it gets.”

In the usability questionnaire (Fig. 4.13b), participants found GeShort to be significantly faster
and easier to use than the default method. They felt that various functions were better integrated in
GeShort than the default method, making it substantially easier to use than the baseline. Particularly,
they appreciated how the gestural shortcuts matched the keyboard shortcuts. One participant (male,
21 years) commented that this made performing editing tasks “much easier on GeShort.” Hence,
participants preferred using GeShort on their mobile devices significantly more than the default
method. One participant (female, 23 years) summarized, “I found [the] new method easier to use
and noticed I typed faster. GeShort made typing more accessible in my experiences especially when
compared to Google.”

4.7 Conclusion
We presented GeShort, a text editing and formatting method for mobile devices. GeShort facili-
tates direct cursor positioning by using three simple rules, one-handed text editing and formatting
with gestural shortcuts inspired by keyboard hotkeys, and delayed, repeated, and batch editing using
a floating clipboard. We compared GeShort with the state-of-the-art Gboard in two user studies.
Results of the first study revealed that the proposed method reduces text editing time by 11% and
text formatting time by 22%. When the tasks are broken down into text selection and editing ac-
tions, GeShort reduces selection time by 11% and action time by 17%, validating the benefits of
the method’s selection approach and gestural shortcuts. Results of the second study revealed that
the floating clipboard outperforms the clipboard feature of Gboard by 34% for advanced editing
tasks. Besides, in both studies, participants found GeShort less onerous in terms of mental demand,
physical demand, and effort, improving their overall performance with the method. They perceived
GeShort as faster and easier to use than Gboard, felt that its functions were better integrated, and
wanted to keep using it on their mobile devices.
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4.7.1 Limitations

We acknowledge several limitations of the work. First, GeShort uses gestural shortcuts, which are
designed based on keyboard hotkeys. Hence, those who are unfamiliar with the hotkeys may require
extra time to learn the method. Limited discoverability of gestural interactions have long been a
discussion in the literature [137]. Further investigations, particularly in-the-wild studies, are needed
to find out whether users are able to discover and use the method in the real-world. Second, we used
common editing and formatting tasks in the user studies, thus it is unclear whether the findings are
generalizable to more complex editing and formatting tasks. Although it is doubtful that users would
choose to perform such complex tasks on mobile devices. We encourage the research community
to explore this further. Finally, we used convenience sampling for recruiting participants, which
resulted in mostly tech-savvy young adults in the user studies. Therefore, the results reported here
may not be generalizable to a more diverse population.

(a) Bold font (b) Colored font (c) Bold font & labels (d) Colored font & labels

Figure 4.14: Four key highlighting approaches will be explored in the future to facilitate gestural
shortcut discovery and learning.

4.8 Future Work
In the future, we will develop a more sophisticated approach to facilitate text selection on mobile
devices. For this, a longitudinal study will be conducted to understand users’ text selection behaviors,
then a machine learning model will be developed to predict potential selection actions. We will also
explore the possibility of customizing the method for other touchscreen-based devices, particularly
smartwatches and interactive tabletops.
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4.8.1 Key Highlighting

The current interface does not provide any visual cues to facilitate the discovery and learning of
the gestural shortcuts. In the future, we will investigate whether highlighting all possible shortcut
keys as the user touches or initiates a gesture from the Space accommodates discovery or improves
learning and performance since such approaches have been shown to improve input performance
in the literature [62, 23, 66]. Particularly, four different highlighting approaches will be explored:
1) bold font, 2) colored font, 3) bold font with labels, 4) colored font with labels, as illustrated in
Fig. 4.14.
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Table 4.7: Examples of the four types of clipboard tasks used in the second study.

Task GeShort Gboard

Cut/Copy, then paste from suggestion bar

Cut/Copy, type, then paste from suggestion bar

Paste existing entries from the clipboard

Paste text multiple times (repeated paste)
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Chapter 5

Conclusion & Future Work

This dissertation investigates innovative methods for text and numeric input on mobile and wearable
devices, aiming to enhance input speed, accuracy, and user satisfaction. By utilizing the current
functionalities of smartphones and smartwatches, we seek to offer alternative input options that can
significantly improve the user experience

Initially, we developed three novel methods for number selection on smartwatches: directional
swipes, wrist twisting, and adjusting screen contact force. These methods offer a significant improve-
ment over traditional number pickers by allowing users to smoothly switch between slow-and-steady
and rapid continuous adjustments. We conducted two extensive user studies to assess these methods
under various conditions, including both stationary and mobile use, as well as for selecting individ-
ual numbers and editing numbers within a text. The swipe-based method emerged as a standout,
showing significantly quicker input speeds in all scenarios. Users praised its efficiency, precision,
and low demand on mental and physical effort, with accuracy rates remaining high across different
situations. This underscores the swipe method’s potential as an optimal solution for smartwatch
number selection.

Looking ahead, we plan to test the effectiveness of our number selection methods on larger
touchscreen devices, like smartphones and tablets. Additionally, we aim to explore new selection
techniques utilizing the unique hardware features of smartwatches, such as the crown and bezel, for
further innovations in number picking.

Subsequently, we explored the use of contact force as a novel interaction method on smart-
watches, specifically to improve selection accuracy for smaller targets. We conducted three user
studies to examine this. First, we determined the comfortable range of force that users can apply
to smartwatches. Second, we found that force input significantly outperforms traditional touch in
selecting smaller targets. Third, we introduced and evaluated two new force-based methods for
character-level text entry, showcasing their effectiveness in real-world scenarios. Beyond demon-
strating the utility of force input, these keyboards are noteworthy contributions in their own right,
offering more compact designs compared to existing character entry methods and facilitating quick
user adaptation. These keyboards are envisioned as complementary tools for predictive keyboards,
particularly in bypassing limitations like the prevention of out-of-vocabulary word entry due to ag-
gressive autocorrection, thereby allowing for the inclusion of occasional non-dictionary words.

In the future, we aim to investigate different control-display mapping functions for force input
and apply machine learning techniques to enhance reliability. Furthermore, we plan to conduct lon-
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gitudinal studies on these new keyboards and integrate them with predictive text systems to achieve
faster text entry.

Finally, we introduced GeShort, a novel method for text editing and formatting on mobile devices.
GeShort revolutionizes the editing process by simplifying direct cursor placement with three easy-
to-follow rules, enabling one-handed editing and formatting through gestural shortcuts inspired by
keyboard commands, and enhancing delayed, repeated, and batch editing with a floating clipboard.
We evaluated GeShort against the leading Gboard in two user studies. The first study’s findings indi-
cated that our method reduces text editing time by 11% and formatting time by 22%. Further analysis
into text selection and editing actions showed an 11% reduction in selection time and a 17% decrease
in action time, underscoring the efficacy of GeShort’s selection technique and gestural shortcuts. The
second study demonstrated that GeShort’s floating clipboard feature surpasses Gboard’s clipboard
in efficiency by 34% for complex editing tasks. Additionally, participants reported that GeShort
was less mentally and physically demanding and required less effort, which enhanced their overall
experience. They found GeShort to be quicker and more user-friendly than Gboard, appreciated its
integrated functionality, and expressed a desire to continue using it on their devices.

Looking ahead, we plan to refine text selection mechanisms on mobile devices further. A lon-
gitudinal study will be carried out to observe user behaviors around text selection, followed by the
development of a machine learning model to predict likely selection actions. Moreover, we will
investigate how to tailor this method for other touchscreen devices, especially smartwatches and
interactive tabletops.

The results showcased in this dissertation demonstrate that numeric and character input and edit-
ing can be significantly enhanced in terms of speed, accuracy, and user preference. These improve-
ments are realized through meticulous interface and interaction design, the adoption of straightfor-
ward rules, and the application of language models, leveraging the existing features of mobile and
wearable devices. Crucially, achieving these advancements does not necessitate the introduction of
additional sensors, new hardware, or the increased computational demands associated with sophis-
ticated learning models.
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