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ABSTRACT

Touch is the predominant method of text entry on mobile devices.
However, these devices also facilitate tilt-based input using ac-
celerometers and gyroscopes. This paper presents the design and
evaluation of TiltWriter, a non-touch, tilt-based text entry technique.
TiltWriter aims to supplement conventional techniques when pre-
cise touch is not convenient or possible (e.g., the user lacks sufficient
motor skills). Two keyboard layouts were designed and evaluated:
Qwerty, and “Custom”, a layout inspired by the telephone key-
pad. Novice participants in a longitudinal study achieved speeds of
12.1 wpm for Qwerty, 10.7 wpm for Custom. Error rate averaged
0.76% for Qwerty, 0.62% for Custom. A post-study extended ses-
sion yielded 15.2 wpmwith Custom, versus 11.5 wpmwithQwerty.
Results and participant feedback suggest that a selection dwell time
between 700 - 800 ms benefits accuracy.
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1 INTRODUCTION AND MOTIVATION

Mobile text entry is pervasive and typically involves repeated pre-
cise selections on a touchscreen. But how can users enter text when
precise selection is not possible or there is no touchscreen present?
The latter is exemplified in virtual reality (VR) applications, which
are increasing in popularity. This paper presents TiltWriter, a text
entry technique that uses input from the orientation sensors (ac-
celerometers and gyroscopes) found in most mobile devices (e.g.,
smartphone, tablets) and other hand-held devices (e.g., game con-
trollers, VR controllers). Using device tilt [23] to enter text solves
many challenges with mobile device interaction: 1) Users might
be too encumbered by carrying other items (e.g., a bag, drink, or
umbrella) to precisely use the touchscreen while walking [2, 18];
2) The touchscreen might not recognize selections if the user is
wearing gloves [22]; 3) Typing and holding the device with one
hand might cause accidental selection with the palm [25]; 4) The
touchscreen might even recognize raindrops as selections [32]; and
5) Selecting small touchscreen keys might be too difficult for users
with large fingers (i.e., the “fat-finger problem” [33]). Using tilt
also provides an accessible text entry solution for older users [17]
and users with fine motor challenges, such as hand tremors [21].
Additionally, no-touch with TiltWriter also makes it suitable in VR
applications. Although there are numerous methods for entering
text in VR [5], there is not yet a conventional one. In subsequent
sections, we detail the design of TiltWriter and its evaluation in a
longitudinal user study.

2 DESIGN

TiltWriter uses a device’s tilt to move a tracking virtual ball over
an onscreen keyboard. Moving the ball over a key highlights it.
Keeping the ball over a key (i.e., dwelling) selects the key, as if the
user had pressed or tapped it. Although dwelling incurs additional
time to enter text, it is required to disambiguate the intended target
and also gives users opportunity for corrective action, if necessary.

Figure 1 shows TiltWriter with a Qwerty keyboard. To aid text
entry, TiltWriter provides word suggestions and completions in a
list above the keyboard. Selecting a word from the list enters the
word, followed by a space. Although the list only displays three
words at once, selecting the “NEXT” key shows the next three words
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Figure 1:TiltWriter with aQwerty layout. The tracking ball

is visible, and the V-key is highlighted, but not yet selected.

in the list. The words in the completion list are derived from an
English corpus using the previously entered letters, and are sorted
in decreasing order of frequency within the corpus. If no input has
yet occurred, the three most-frequent words in the corpus (“the”,
“of”, and “and”) appear.

The dwell duration for selection is user-configurable, and ranges
from 300 to 1000 ms. To prevent accidental selections, there is a
gutter, or rest area, around the perimeter of the keyboard, where
no selections occur. Users can place the tracking ball in the gutter
while they scan the keyboard for their next selection, search the
completion list for the desired word, or pause while they compose
text. The tracking ball is position-controlled, meaning that the
device’s tilt angle maps to a specific ball location on the screen
[31, eq. 6-9]. Thus, holding the device at a constant angle keeps
the tracking ball stationary at a specific location, and changing
the device’s tilt repositions the ball. This is counter to velocity-
controlled tracking, where device angle controls the velocity of
movement.

Typical text entry onmobile devices involves rapid, precise touch
selections. But finger occlusion and the large size of a finger (relative
to a key) often result in accidental selection of adjacent keys. To
improve accuracy, many input methods use statistical decoding
with a language model [7] to automatically select the most probable
intended key. This technique was not implemented with TiltWriter,
as the tracking ball eliminates the issue of both finger size and
occlusion. Additionally, the key is highlighted before selection. The
user can easily adjust the tilt before a key is selected.

As of now, TiltWriter does not facilitate input of upper-case let-
ters, special characters, digits, or punctuation characters. However,
such functionality could be easily implemented using available keys
or submenus on the keyboard.

2.1 Return of the Ambiguous Keyboard

TiltWriter can include any selection-based keyboard. In the early
days of mobile communications, users entered text messages using
the 12-key phone keypad. With this layout, 26 letters are grouped
with three or four letters on each numeric key (Figure 2, left). Such
a mapping is “ambiguous”, as a single key press could correspond
to any of the letters on that key.

A popular technique called T9 [19] allowed users to press one
key for each letter in the desired word. It would then look-up the
key sequence in a corpus to determine the corresponding word. If a
“collision” occurred (i.e., multiple words matched the key sequence),
the user cycles through candidate words by pressing a “next” key

Figure 2: Inspired by the T9 technique (left), TiltWriter also
implements a Custom ambiguous keyboard (right).

(typically the *-key). The user then accepts the displayed word by
entering a space (typically the 0-key).

TiltWriter implements a phone-like keypad as well as a “Custom”
T9-like technique that maps letters to five keys, and displays up to
five words in the completion list along the right of the keyboard
(Figure 2, right). As with the Qwerty technique, users enter text by
selecting the keys whose letters spell the desired word, and select
the word from the completion list. Ambiguous keyboards rely on a
corpus to disambiguate user input. Thus, the Custom keyboard can
only enter words in its dictionary. A secondary, multi-tap mode
could be implemented to enter non-dictionary words (and save
them to the dictionary). In multi-tap, a user would select a key
multiple times to indicate the desired character (e.g., once for “a”,
twice for “b”, and thrice for “c”). Entering two characters from the
same key would simply require the user to pause for a time-out
duration between characters.

The Custom keyboard was designed with several issues in mind.
With only five letter keys, the keys are larger and therefore require
less precision for selection. This benefits encumbered users, or
those with hand tremors or limited motor skills. Since there are
fewer keys, the Custom keyboard occupies less space on the screen
than the Qwerty layout. Thus, text entry should involve shorter
distances between selections. The letter arrangement is alphabetic,
reducing the visual scan time to find letters. Furthermore, the letter-
keys are in a single column, simplifying the motor movements
to navigate the letters. With these constraints, the division of the
alphabet over five keys was driven by the desire to minimize the
overall keystrokes for English text entry, as now described.

2.2 KSPC Analysis

Keystrokes per character (KSPC) is an established metric that cap-
tures the keystroke efficiency of a text entry method [13]. Of course,
“keystrokes” is “tilt gestures” in the present context. For ambiguous
keyboards, KSPC reflects the overhead in resolving the ambiguity
when a “collision” occurs - a key sequence corresponding to more
than one word. TiltWriter includes a built-in dictionary with about
10,000 words. With this, a phone keypad has KSPC = 1.0072 [11].
In other words, the overhead, on average, is just 7.2 keystrokes
per 1000 keystrokes. The KSPC calculation is for T9-style input,
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where the user navigates an ordered list of words when collisions
occur. A similar calculation for the Custom keyboard yields KSPC
= 1.0298, for an overhead of 29.8 keystrokes per 1000 keystrokes.
This is less efficient than a phone keypad, but the keys are bigger -
a clear tradeoff. However, the Custom keyboard includes a word
completion list with five words; thus, the user has the opportunity
to reduce keystrokes by selecting words early. The KSPC calcula-
tion for the Custom keyboard including word completion is KSPC =
0.6490. For a Qwerty keyboard, the calculations without and with
word completion are KSPC = 1.0000 and KSPC = 0.4989, respectively.
Since the Custom keyboard is ambiguous, it requires increased use
of the “NEXT” key to search colliding and completed words in the
completion list. However, little Next-key usage is required because
colliding and completed words appear in groups of five. The longi-
tudinal study detailed below aims to compare specific performance
metrics between the Qwerty and Custom TiltWriter layouts.

3 RELATEDWORK

Other text entry methods use device tilt as input, but most also
require some touch-based selection. Users of TiltType [20] enter
characters on a watch-sized device by combining tilt and button
presses. Unigesture [24] facilitated ambiguous text entry using eight
tilt directions, and button presses for corrections. It uses two cus-
tom layouts that arrange the letters and the space character in
eight zones and thus requires precise target selection and tilting the
device in all directions, which may not be feasible for individuals
with hand tremors or limited motor skills. TiltText [35] uses phone
tilt to disambiguate the intended character from keypad presses.
UniGest [3] and GesText [10] created a gesture alphabet using verti-
cal, horizontal, and rolling motions performed mid-air with a game
controller. SWiM [36] uses a tilt-controlled tracker to draw on a
shape writing [11] keyboard; a screen tap delineates input. Swiftkey
[16] released a similar method as an April Fools’ Easter Egg that
enabled users to shape write, then dwell the tracking ball over a
suggested word in the suggestion bar to enter the respective word.
Little information is available about this method; however, a video
demonstration [12] suggests that tracking used velocity-control
rather than position-control.

Rotext [32] has the goal of sight-free text entry. It arranges char-
acters in an arc layout, optimized for disambiguation. Users tilt
a smartphone to indicate the approximate location of the desired
character. Flicking and swinging motions confirm or correct in-
put, and audio feedback speaks the disambiguated word. Finally, a
study by Fitton et al. [6] investigates using tilt input while mobile.
Teenage participants performed a tilt-controlled character selection
task while walking the perimeter of a square 2.5 meters (8.2 feet) in
length. They expressed interest in tilt-based input and willingness
to use tilt for text entry. This method uses a position-control map-
ping like TiltWriter, but with a more physically demanding layout
that arranges the letters in a 5 × 3 grid.

Work by Speicher et al. [28] evaluated multiple techniques for
text entry in VR. Although four methods involved button presses
for selection, two of them were touch-free: Controller Tapping (CT)
and Freehand (FH). With CT, users hold hand-held controllers like
pens and hunt-and-peck at a virtual keyboard. The FH technique
is similar, but users use their fingers instead of controllers. Chen

et al. [4] evaluated a different method that enables users to shape
write [10] in VR. With this method, users use a controller like a
laser pointer to draw shapes on a virtual keyboard. Pressing the
“trigger” button of the controller starts drawing a shape, releasing
it stops drawing and enters the predicted word.

4 EVALUATION

An experiment was conducted to evaluate the TiltWriter technique.
In addition, the experiment compares the performance of aQwerty
layout to one with ambiguous input.

4.1 Participants

Ten participants were recruited from a local university campus.
Three identified as female, and seven identified asmale. Ages ranged
from 19 to 37, with a mean of 24.8 (SD = 4.7). One participant was
ambidextrous, but used his left hand as the dominant one during
the study. Participants who completed the study received US $60
for their assistance.

Using the Interagency Language Roundtable (ILR) scale [9],
four participants rated their English writing proficiency as Level 5
(“Functionally Native”), one as Level 4 (“Advanced Professional”),
and five as Level 3 (“General Professional”). All participants had
experience with smartphones, averaging 6.6 years (SD = 1.3). Expe-
rience with other touchscreen-based devices (e.g., tablets) averaged
4.9 years (SD = 1.4). Eight participants had 4.3 years (SD = 2.0) expe-
rience with tilt-based games. Regarding text entry, all participants
had experience using predictive methods, averaging 5.9 years (SD
= 2.3). Surprisingly, they also all had an average of 5.9 years (SD =
3.4) experience with ambiguous keyboards. Some participants used
T9 before transitioning to smartphones, while others used Pinyin
keyboards to enter Chinese characters.

4.2 Apparatus

The interface for the study is shown in Figure 3. The software was
written in Java for Android 5.1 or later.

The app implements the TiltWriter input method with the op-
tion for the Qwerty or Custom layout. It presents phrases, logs
performance metrics, and allows configuration of study parameters,
such as dwell time, keyboard layout, and the phrases file. Phrases
were chosen randomly (without replacement) from a 500-phrase set
[15]. They did not contain any numbers, punctuations, or uppercase
letters. The corpus used for the word completion list was based
on work by Silfverberg et al. [26]. It is a word-frequency list that
represents the 9022 most frequent words in English [1], plus the
words in the phrases file.

The experiment used a OnePlus One smartphone running An-
droid 5.1.1 (Lollipop). The touchscreen measured 5.5 inches (139.7
mm) with a resolution of 1080 × 1920 pixels and a pixel density
of 401 ppi. The device used an LIS3DH accelerometer [30] and an
L3GD20 gyroscope [29]. The tracking ball used position-control
with a sensor sampling rate of 50 Hz. Position control was used in
combination with a nominal tilt gain setting of 50. With the device
tilted about 25 to 40 degrees from flat, the ball was positioned at
the side of the display for portrait or landscape orientation, respec-
tively. With the device flat, the ball was in the center of the display.
This is consistent with the control scheme described by Teather
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Figure 3: The TiltWriter interface facilitated parameter con-

figuration (a), and input via the Custom (b) and Qwerty (c)

layouts.

and MacKenzie in their tilt-based study [31, eq. 6-9]. Dwell-time
selection was used, whereby the virtual ball was positioned and
maintained inside a key for a predetermined duration (see Design
below). In practice, TiltWriter could accommodate users with motor
challenges by filtering the tilt sensor input, adjusting the tilt gain
setting, or increasing the key size.

4.3 Procedure

In Session 1, the investigator demonstrated how to use each tech-
nique. He demonstrated how to select letters from the keyboard,
how to select words from the completion list, and how to use the
“NEXT” button on the Custom layout to see the next most prob-
able words. Selecting ENTER ( ) signaled the completion of the
current phrase and displayed the subsequent phrase. To make the
text entry strategy more consistent between the two keyboards, the
spacebar was disabled on the Qwerty keyboard. Thus, with either
keyboard, words could only be entered by selecting them from the
completion list. This approach encouraged participants to learn and
leverage the idea and benefits of word completion. Following the

demonstration, the participants practiced by entering five random
phrases.

Figure 4: Participants entered text using Qwerty (left) and

Custom (right) keyboards.

TheQwerty condition required participants to hold the device in
landscape orientation, while the Custom condition required portrait
orientation. The investigator demonstrated moving the tracking
ball to the gutter area to avoid accidental selections while scanning
for a letter. He then instructed participants to enter phrases “as
fast and accurately as possible”, and to “correct mistakes as they
notice them”. To accommodate participants’ increase in expertise,
the dwell time was decreased between each of the first five sessions.
Further details are in the Design section below. During the study,
display auto rotation, Wi-Fi, and phone functionality were disabled,
and all non-essential apps were closed.

Participants scheduled sessions at their convenience, with two
restrictions: sessions must be on different days, but with at most
two days in between. As participants learned the techniques, the
duration of sessions decreased. The testing time decreased from
about 28 minutes in Session 1 to about 16 minutes in Session 10.
Sessions took place in a quiet office environment, with participants
seated comfortably at a desk. An LED lamp provided diffuse lighting
and aimed to eliminate any glare on the device screen. Participants
completed a demographics questionnaire at the start of Session
1 and consent forms before each session. A post-study question-
naire completed at the end of Session 10 combined NASA-TLX [8]
questions with questions specific to the two input techniques.

4.4 Design

The study employed a 2 × 10 within-subjects design. The indepen-
dent variables and levels were as follows:

• Keyboard: Qwerty (Q), Custom (C)
• Session: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

To offset learning effects of the keyboards, participants were as-
signed to one of two groups. Group 1 used Qwerty, followed by
Custom, while Group 2 used the reverse order. Each session con-
tained three blocks, with five phrases per block, for a total of 10 ×
2 × 10 × 3 × 5 = 3000 phrases.

The dwell time for selection varied between sessions 1 to 10
as follows: 1000, 900, 800, 700, 600, 500, 500, 500, 500, and 500 ms.
Although dwell time is a confounding variable, the initially higher
values are meant to aid in learning the input methods, while the
lower values are meant to benefit performance.
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The dependent variables were entry speed, error rate, and ef-
ficiency. Entry speed was measured in words per minute (wpm),
where a “word” is five characters, including spaces. Error rate was
measured using the minimum string distance (MSD) metric [27,
eq. 2]. Efficiency was measured using the keystrokes per character
(KSPC) metric described earlier. Specifically, letKSPCmin represent
the minimum number of selections required to enter the presented
phrase. This typically involves selecting words from the completion
list as soon as they appear. Furthermore, let KSPCphrase represent
the actual number of selections made to enter that presented phrase.
Efficiency is thus the quotientKSPCmin /KSPCphrase , with perfect
efficiency yielding a value of 1.0, and smaller values representing
lower efficiency.

5 RESULTS AND DISCUSSION

Seventeen out of the 3000 phrases entered (i.e., 0.57%) had an error
rate above 50%, and were omitted from further analysis. Presumably,
participants selected ENTER prematurely, causing the exceptionally
high error rate. Conversely, 94.0% of all transcribed phrases were
error-free.

ANOVAs were conducted only on data from Session 6 to Ses-
sion 10. Dwell time was constant at 500 ms during those sessions,
thus eliminating any confounds. The group effect was not statisti-
cally significant for any of the dependent variables, indicating that
counterbalancing worked.

5.1 Entry Speed

As shown in Figure 5, entry speed of both keyboards started at 6.4
wpm, but Qwerty surpassed Custom in Session 2. By Session 10,
entry speed was 12.1 wpm for Qwerty and 10.7 wpm for Custom.
The difference in entry speed between the two keyboards was
always within 2 wpm, and the effect of keyboard was statistically
significant (F1,8 = 34.6, p < .0005). These results are accurately
represented (R2 > .97) by power law of learning models [14]. These
models project entry speeds of 15 wpm and 13 wpm by Session 20
for Qwerty and Custom, respectively.

Figure 5: Qwerty entry speed surpassing Custom.

The ambiguous nature of the Custom keyboard required more
selections to disambiguate and select completed words. KSPCmin
for the phrases in the Custom condition was 0.74 (SD = 0.02), versus

0.62 (SD = 0.02) for Qwerty. This increase in required selections
could have contributed to the slower entry speed with the Custom
keyboard.

In comparison to the techniques described in the Related Work
section, TiltWriter fairs well in terms of entry speed. GesText entry
speed started at 3.7 wpm and rose to 5.3 wpm over four sessions of
15 phrases [9], while TiltText grew from 7.4 wpm to 13.6 wpm over
16 blocks of four phrases [35]. Rotext had about 10 wpm at the end
of five 20-minute sighted sessions [34]. SWiM participants achieved
15.5 wpm after three blocks of 10 phrases [34]. The VR techniques
CT and FH averaged 12.7 wpm and 9.8 wpm, respectively [26].

5.2 Error Rate

The effect of keyboard on error rate was not significant (F1,8 = 1.43,
p > .05). Qwerty averaged 0.76% (SD = 1.27) and Custom averaged
0.62% (SD = 0.95). Qwerty error rates were higher than those of
Custom during the first and last sessions, but they often crisscrossed
each other throughout the study. The error rates are rather erratic
(Figure 6), which is not unusual for word-based text entry methods.
When transcription errors did occur, participants misspelled entire
words due to an incorrect selection from the completion list, or
omitted them entirely. Consequently, those phrases would have
rather high error rates. In comparison, the SWiM error rate was
0.88% [34], while Rotext had an impressive 0.01% error rate in the
sighted sessions [32]. Error rates for VR techniques CT and FH
were high, at 1.2% and 7.6%, respectively [26]. The other techniques
presented in the Related Work section did not involve any quanti-
tative empirical evaluation of error rate, or used a non-equivalent
metric.

Figure 6: Error rates were erratic, which is not unusual.

The MSD error rate metric only reveals uncorrected errors in
the transcribed phrase. Investigating corrective actions, in the form
of backspace use, yields additional insight. Keyboard had a sig-
nificant effect on backspace use (F1,8 = 30.9, p < .0005), with the
Custom condition exceeding Qwerty. Figure 7 illustrates consis-
tently fewer corrections with the Qwerty keyboard, suggesting
that participants opted to leave errors uncorrected. With the Cus-
tom keyboard, participants committed and corrected more errors.
They tended to correct more errors in Session 5 to Session 7, but left
more errors and incurred higher error rates in Session 8 to Session
10
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Figure 7: Participants corrected more with the Custom key-

board versus the Qwerty keyboard.

5.3 Efficiency

The effect of keyboard on efficiency was statistically significant
(F1,8 = 109.4, p < .0001). Qwerty efficiency remained steady around
.92, while Custom efficiency fluctuated from .72 to .85 (Figure 8).
Efficiency for both keyboards peaked early in the study: Session 3
for Qwerty, and Session 4 for Custom. These sessions correspond
to dwell times of 800 ms and 700 ms, respectively. Both keyboards
also experienced a dip in efficiency and a spike in backspace use
during Session 6 (Figure 7), when dwell time decreased to 500 ms.
For Qwerty, this also corresponds to a spike in error rate (Figure 6).
Perhaps a dwell time in the 700 to 800 ms range allowed participants
to scan for the next selection trajectory before moving the tracking
ball.

Figure 8: Efficiency by keyboard and session. Both key-

boards experienced a dip in efficiency when dwell time

dropped to 500 ms in Session 6.

A future study could investigate this further. The efficiency de-
crease with a shorter dwell time suggests that participants hesitated
on a key and accidentally selected it twice. Participants corrected
the mistake when using the Custom keyboard (hence, the increased
backspace use), but left the error when using Qwerty (thus, the
high error rate). Although participants’ efficiency with the lower

dwell time did increase by Session 10, they failed to reach the pre-
vious highs.

5.4 Extended Session

Entry speed results in Session 10 suggested that participants were
still learning and improving their performance. An extended session
was added to investigate TiltWriter performance with experienced
users. The same apparatus was used, configured with a 500 ms dwell
time. Six of the original 10 participants were recruited and paid an
additional US $10. Half used theQwerty keyboard for the extended
session, while the other half used the Custom keyboard. The session
involved five blocks of entering “the quick brown fox jumps over
the lazy dog” 10 times, for a total of 6 × 5 × 10 = 300 additional
phrases. However, four phrases were omitted from further analysis:
two had an error rate above 50%; two exhibited long, unexplained
pauses during input.

Entry speed for the first phrase was 9.6 wpm for Qwerty and
9.3 wpm for Custom. After the third phrase, Custom surpassed
Qwerty, finished at 15.2 wpm, and averaged 13.6 wpm (SD = 2.1)
overall. Qwerty finished at 11.5 wpm and remained relatively
steady, averaging only 11.1 wpm (SD = 0.9). However, this difference
was not statistically significant (F1,4 = 4.91, p > .05). Delving deeper
revealed that keyboard did have a significant effect on keystrokes
(i.e., selections) per second (F1,4 = 23.21, p < .01). As shown in Figure
9, keystrokes per second improved moderately with Qwerty, but
saw an early surge with Custom.

Figure 9: The rate of key selections per second.

Participants using the Custom keyboard consistently averaged
more than one keystroke per second beyond the 19th repetition.
This is likely due the Custom keyboard having fewer keys to visu-
ally scan, a smaller area to traverse for selections, and requiring
traversal in mainly one direction (i.e., vertical). But since selection
speed relates to entry speed, why is there discrepancy in signifi-
cance between keystrokes per second and entry speed? Entry speed
is based on the transcribed phrase, while keystrokes per second is
based on raw input. Those inputs could be corrective (e.g., selecting
the backspace key) or inefficient (e.g., not selecting a word when it
first appears in the completion list). Repeatedly entering the same
phrase allowed participants to anticipate words appearing in the
completion list and to better optimize their actions. The Custom
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keyboard saw more use of the completion list compared to previ-
ous sessions, reaching an efficiency of .93. There was no change
in efficiency with the Qwerty keyboard, which remained at .92.
The difference in efficiency between keyboards was not statistically
significant (F1,4 = 0.04, ns). As with the previous sessions, error
rates were erratic and keyboard layout did not have a significant
effect (F1,4 = 1.03, p > .05). Error rate in the Custom keyboard group
decreased to 0.34%, but the Qwerty group saw a threefold increase
to 2.83%; they likely ignored errors to improve entry speed. Further
investigation showed the opposite with Custom participants; they
seemed to correct more errors. Custom participants averaged 0.59
(SD = 0.49) backspaces per phrase, while Qwerty participants av-
eraged only 0.18 (SD = 0.50). Like error rate, this difference was not
statistically significant (F1,4 = 3.63, p > .05). However, both metrics
could explain why the significance (i.e., difference in the means) of
keystrokes per second was attenuated in entry speed.

5.5 Participant Feedback

Participants found both TiltWriter keyboards to be quickly learn-
able and easy to use. However, they described the tilting technique
as too cumbersome to use frequently, given the speed and simplicity
of the default keyboards on mobile devices. This is understandable.
TiltWriter is not meant to replace the ubiquitous, touch-based Qw-
erty keyboard; it was designed to provide an alternative input
method when operating a touchscreen is not convenient or possi-
ble. One participant commented on the dwell time setting of the
Custom keyboard: “[S]low down the quickness of the selection.
Sometimes I couldn’t move fast enough and would take time to
delete an incorrect selection.” As mentioned previously, a dwell
time in the 700 to 800 ms range benefitted efficiency more than the
500 ms used in the latter half of the study. It allowed users to better
plan their next selection, which resulted in fewer errors. Based on
the NASA-TLX responses (Figure 10), participants achieved a high
level of performance (characterized by a low score) with moderate
effort and little frustration. Mental demand was slightly elevated
for both keyboards. Participants reported that Custom was more
taxing than Qwerty in the mental and effort workloads. However,
the effect of keyboard was not statistically significant for any of
the workload metrics (p > .05). The analysis was conducted using
the Wilcoxon signed-rank test, due to the non-parametric data and
study design [14].

6 CONCLUSION

TiltWriter provides an alternative (not a replacement) to touch-
based techniques for text entry. Participants found both theQwerty
and Custom keyboards easy to use. After 10 sessions, entry speeds
reached 12.1wpm forQwerty and 10.7wpm for Custom. Error rates
averaged 0.76% for Qwerty and 0.62% for Custom. Participants
corrected more with Custom, but left more transcription errors
with Qwerty. Although efficiency was better with Qwerty than
with Custom, both keyboards peaked during early sessions with
higher dwell times.

Figure 10: Participant feedback using NASA-TLX workload

scores. Error bars represent ±1SD.

7 FUTUREWORK

Future work is numerous and multi-disciplinary: identifying the
ideal dwell time for experienced users; evaluating TiltWriter with-
out a predictive system; comparing TiltWriter to tapping and shape
writing techniques with older adults and those with fine motor
challenges; and evaluating TiltWriter in a VR environment with a
hand-held device (possibly for both text entry and remote pointing).
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