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Fig. 1. The four mid-air selection methods explored in this work, with two types of ultrasonic haptic feedback.
From le�, Push, users move the index finger forward like pushing an elevator key, Tap, users flick the index
finger downwards like tapping on a touchscreen, Dwell, users hold the current position of the index finger for
800 ms, and Pinch, users pinch using the thumb and index finger.

This work compares four mid-air target selection methods (Push, Tap, Dwell, Pinch) with two types of ultrasonic

haptic feedback (Select, Hover & Select) in a Fitts’ law experiment. Results revealed that Tap is the fastest,

the most accurate, and one of the least physically and cognitively demanding selection methods. Pinch is

relatively fast but error prone and physically and cognitively demanding. Dwell is slowest by design, yet the

most accurate and the least physically and cognitively demanding. Both haptic feedback methods improve

selection performance by increasing users’ spatial awareness. Particularly, Push augmented with Hover &

Select feedback is comparable to Tap. Besides, participants perceive the selection methods as faster, more

accurate, and more physically and cognitively comfortable with the haptic feedback methods.
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1 INTRODUCTION

Mid-air gestural interaction is more natural and intuitive than traditional interaction methods since
it enables direct control of virtual objects using analogies from the real-world [8, 18, 23, 32, 67].
Due to the unreliability of early tracking systems and gesture recognition methods, early work in
the area focused on improving gesture detection and recognition. There is also considerable work
on eliciting mid-air gestures from users to increase their guessability [61]. Recently, the growing
availability, a�ordability, and reliability of commercial gesture recognition products (e.g., Leap
Motion Controller and Microsoft Kinect) there is increased use of three-dimensional (3D) mid-air
gestures to interact with two-dimensional (2D) displays (e.g., interactive tabletops and walls, smart
televisions, and desktop monitors) and content (e.g., menus and keyboards).
A survey of 80 recently published papers on mid-air gestures [33] revealed that 50% of the sur-

veyed prototypes contained 2D displays and content, 29% contained 3D content, and the remaining
21% of the prototypes did not develop any digital content, but instead asked participants to point
at an analog target. This growing interest in interacting with 2D displays and content with 3D
gestures is presumably because 3D gestures are more natural [8, 23, 67] and do not necessarily
require holding or wearing an extramural device for interaction, like a mouse or a controller. The
spread of COVID-19 has also inspired interest in investigating mid-air gestures to enable contact-
less interaction with public devices, including ATMs and kiosks [17, 28]. However, little work has
focused on comparing di�erent mid-air selection methods for desktop and situated displays to
identify the best performed gestures in terms of speed, accuracy, and user preference.
Mid-air gestures are di�cult to perform due to the lack of spatial feedback. We experience

real-world 3D reality by exploring spatial relationships between real-world objects, and performing
gestures relative to these objects [23, 51]. The absence of a spatial reference makes mid-air gestures
a consciously calculated activity rather a simple and e�ortless process [5], and this a�ects speed,
accuracy, and ergonomics. To address this, various haptic feedback mechanisms have been proposed,
including vibrotactile feedback through wearables, ultrasound, magnetic �eld repulsion, and air
vortex. Most of this work, however, compares novel haptic feedback methods with traditional
feedback methods (visual and auditory) rather than comparing the e�ects of di�erent types of
haptic feedback produced by the method (e.g., proximity and actions-based) on mid-air gestures.
In this work, we compare the four most commonly used mid-air selection methods (Push, Tap,

Dwell, Pinch) [8] with two types of ultrasonic haptic feedback (Select, Hover & Select). We used a
Fitts’ law experiment to identify the best performed and most preferred mid-air gestures and haptic
feedback methods for target selection. The remainder of the paper is organized as follows. We
begin with a review of the relevant literature, then describe the standard Fitts’ law experimental
protocol. We then discuss the design and development of the investigated mid-air gestures and
feedback methods. This is followed with the methodology of the Fitts’ law experiment, then the
results and design recommendations based on the �ndings. Finally, we conclude with re�ection on
potential future extensions of the work.

2 RELATED WORK

2.1 Mid-air Gestures

Performing mid-air gestures is considered a more natural and intuitive mode of interaction than
traditional interaction methods as it enables direct control of virtual objects using analogies from the
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Table 1. Performance of mid-air selection methods from the literature. Only the highest reported means
are listed. The table does not include findings from studies involving virtual and augmented reality and
whole-body or multi-modal interaction methods since they are unlikely to be applicable to this work. “Pro.”
signifies Fi�s’ law experimental protocol, “Leap” indicates Leap Motion Controller, “IR” signifies infrared
cameras, “Bps” indicates throughput in bits/second, and "Bi." signifies bimanual.

Reference Gesture Pro. Baseline Tracker Haptics Bps

Bachmann et al. [4] Tap 1D Mouse Leap None 2.7

Foehrenbach et al. [15] Pinch + Vibration 1D Pinch IR Vibratory 3.0

Jones et al. [29] For-Back Push 2D Mouse Leap None 1.2

Jude et al. [30] Dwell (500 ms) 2D Mouse, Touchpad Leap None 2.6

Seixas et al. [50] Tap 2D Mouse, Bi. Gesture Leap None 2.3

real-world [8, 18, 23, 32, 67]. Yet, the most commonly used mid-air gestures are not well investigated
for desktop and situated displays. There is a large body of work on eliciting and gathering intuitive
mid-air gestures for desktop, situated, and large displays [63, 66, 68] and virtual and augmented
reality [3]. Researchers have also investigated mid-air hand and whole-body gestures on various
platforms, including desktop and situated displays [4, 10, 15, 29–31, 50], large public displays and
spaces [1, 42, 45, 64], and augmented and virtual reality [6, 8, 14, 43, 64]. Some have also combined
mid-air gestures with other interaction modalities, particularly touch [42], physical buttons [7],
eye-gaze [10, 41, 46], and speech [21] to enable multi-modal interaction. Most of this work, however,
focuses on comparing mid-air gestures with traditional interaction methods rather than comparing
the most commonly used mid-air gestures with each other in terms of performance, user preference,
and comfort [32].
Push, Tap, Dwell, and Pinch are the most commonly used mid-air gestures for target selection

[4, 29, 30, 58]. Bachmann et al. [4] compared Tap with a mouse in a one-dimensional (1D) Fitts’ law
experiment, where the gesture yielded a 36% lower throughput (2.7 bps) than the mouse (4.2 bps).
Foehrenbach et al. [15] conducted a 1D Fitts’ experiment to compare the Pinch gesture with and
without vibratory haptic feedback provided via a digital glove. The study failed to identify any
signi�cant di�erence between the two methods (both yielded about 2.5–3 bps throughputs). Jude
et al. [30] compared Dwell (500 ms) with a mouse and a touchpad in a two-dimensional (2D) Fitts’
law experiment. In the study, the gesture yielded 45% and 28% lower throughputs (2.6 bps) than the
mouse (4.8 bps) and the touchpad (3.7 bps), respectively, with the dominant hand. In a similar study,
Jones et al. [29] compared Forward–Backward Push with a mouse in a 2D Fitts’ law experiment,
where the gesture yielded a 71% lower throughput (1.2 bps) than the mouse (4.0 bps). The gesture
investigated by Jones et al. is di�erent than the one studied in this work. Jones et al. required users
to make a forward then a backward push, while in our work users only had to make a forward
push to select a target. Seixas et al. [50], in contrast, compared Tap with a mouse and a bimanual
“grab” gesture. In the study, Tap yielded 54% and 15% lower throughputs (∼2.3 bps) compared to the
mouse (∼5.0 bps) and the bimanual gesture (∼2.7 bps), respectively. In a di�erent line of research,
Cabreira and Hwang [8] showed that users �nd pointing with the index �nger the most natural
compared to other pointing approaches. Table 1 summarizes the �ndings of these works.

2.2 Mid-air Haptic Feedback

In the real-world, we experience 3D reality by experimenting with spatial relationships between
tangible objects, and tend to perform gestures relative to these objects [23, 51]. Mid-air gestures are
di�cult to perform in 3D user interfaces due to the lack of this spatial reference. This increases the
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physical and cognitive e�orts needed to perform these gestures and compromises their performance
by a�ecting both speed and accuracy. Many novel mid-air haptic feedback methods have been
proposed to address these, including vibrotactile feedback [34, 35, 40, 49, 55, 69], magnetic �eld
repulsion [65], and air vortex [19, 52, 53]. Augmenting mid-air gestures with a mid-air haptic
feedback method has shown to improve user performance and the overall interaction experience
[17, 26, 36, 48, 59]. Badler et al. [5] reported that providing users with spatial reference in 3D selection
tasks reduces the e�ort needed to perform the tasks. Cornelio Martinez et al. [12] demonstrated that
mid-air interaction accompanied by mid-air haptic feedback increases users’ intentional binding.
Yet, most of these methods require users to wear digital bands, rings, or gloves, or use extramural
devices that are bulky, intrusive, and often impractical.
Ultrasonic haptic feedback, proposed in early 2000s [24, 25], is a non-intrusive solution that

provides touch sensation by sending ultrasonic waves to a target (e.g., �ngertip) at di�erent
wavelengths [9, 60]. The shear wave induced in the skin tissue triggers the mechanoreceptors
within the skin to generate a haptic sensation that is somewhat comparable to a vibratory sensation.
The mechanoreceptors response to vibrations between 0.4 to 500 Hz. For a comprehensive review
of ultrasonic haptic feedback and its applications see a recent survey [47]. While this method has
been compared in empirical studies with traditional feedback methods like auditory and visual
[9, 36, 60], to the best of our knowledge, no prior work has investigated the e�ects of di�erent types
of ultrasonic haptic feedback on the performance of the most commonly used mid-air gestures for
target selection.

(a) The 2D Fi�s’ law task in ISO 9241-9 (b) A screenshot of the custom Unity application

Fig. 2. (a) The target to select is highlighted in red. The arrows and numbers demonstrate the selection
sequence. (b) Example sequence of trials. The black dot is the cursor.

3 FITTS’ LAW PROTOCOL

Fitts’ law is a well-established method for evaluating target selection on computing systems [38].
In the 1990s, it was included in the ISO 9241-9 (revised: ISO 9241-411) standard for evaluating
non-keyboard input devices by using Fitts’ throughput as a dependent variable [54]. The most
common multi-directional protocol evaluates target selection movements in di�erent directions.
The task is 2D with targets of width, equally spaced around the circumference of a circle (Fig. 2a).
Participants select the targets in a sequence moving across and around the circle, starting and
�nishing at the top target. Each movement covers an amplitude �, which is the diameter of the
layout circle. A trial is de�ned as one target selection task, whereas completing all tasks with a
given amplitude is de�ned as a sequence. Throughput cannot be calculated on a single trial because
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a sequence of trials is the smallest unit of action in ISO 9241-9. Traditionally, the di�culty of each
trial is measured in bits using an index of di�culty (��), calculated as follows:

�� = ;>62 (
�

,
+ 1) (1)

The movement time (") ) is measured in seconds for each trial, then averaged over the sequence
of trials. It is then used to calculate the performance throughput ()% ) in bits/second (bps) using the
following equation:

)% =

��

")
(2)

The revised ISO 9241-9 (9241-411) used in this work [27] measures throughput using an e�ective
index of di�cult ��4 , which is calculated from the e�ective amplitude �4 and the e�ective width
,4 to make sure that the real distance traveled form one target to the next is measured. It also
takes into account the spread of selections about the target center.

)% =

��4

")
(3)

��4 = ;>62 (
�4

,4

+ 1) (4)

The e�ective amplitude is the real distance travelled by the participants, while the e�ective width
is calculated as follows, where (�G is the standard deviation of the selection coordinates projected
on the G-axis for all trials in a sequence. This accounts for any targeting errors by the participants,
assuming that participants were aiming at the center of the targets.

,4 = 4.133 × (�G (5)

4 EXPERIMENTAL SYSTEM

We developed the experimental system with Unity3D 2019.4.8f1, Leap Motion Orion 4.0.0 SDK, Leap
Motion Unity Core Assets 4.4.0, and Ultraleap Unity Core Assets 1.0.0 Beta 9. The system enables
users to control a cursor on a computer display by moving the hand. A Leap Motion Controller [56]
tracks hand movements 200 mm above the surface, which is the ideal distance recommended by the
manufacturer [37], and translates its position into x-y coordinates of the cursor on a vertical display.
The system uses the following four most commonly used mid-air gestures for target selection
(Fig. 1) [4, 29, 30, 58].

• Push.With this method, users point at a target with the index �nger then make a forward
push to select it. Due to human physiology, this also moves the hand forward, which we
exploited to detect Push gestures. Based on multiple trials, we used a threshold of 100 mm/s—
when the forward velocity (i.e., along the z-axis) of the palm is over this threshold, a push is
detected, otherwise, the system interprets it as movements to position the cursor.

• Tap. With this method, users point at a target with the index �nger then �ick the �nger
downwards to select it. The system detects a tap based on the angle of the index �nger. When
users point at a target, the �nger is usually extended, where the angle between the joints is
almost 0◦ (Fig. 1). When they tap, the angle between the joints changes (the �nger becomes
non-extended). The system uses the default Leap Motion SDK function to detect this change
in the index �nger to interpret it as a tap. Users naturally extend the �nger after performing
a tap, which makes this method reliable and easy to detect. We also considered using the
downward velocity of the index �nger to detect a tap. But in lab trials, this method was
unreliable, resulting in many false positives due to the continuous movement of the hand
when positioning the cursor.
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• Dwell. With this method, users point at a target with the index �nger then hold the current
position for 800 ms to select the target. We picked the dwell time in a pilot study where 4
participants (2 female, 2 male, 30.3 years, SD = 3.1) selected six circular targets of 40 pixels in
diameter, arranged in a circle of 200 pixels in diameter, using 4 dwell times (400, 600, 800, and
1000 ms) in a random order. In the pilot, 800 ms performed the best in terms of accuracy and
user preference. This threshold falls within usable dwell times reported in the literature [44].

• Pinch.With this method, users point at a target with the index �nger then pinch using the
thumb and the index �nger to select the target. It is detected based on the distance between
the index �nger and the thumb. When the distance is less than 0.05 mm, a pinch gesture is
recognized. The 0.05 mm threshold was selected in lab trials, which revealed that the Leap
Motion Controller usually returns values between 0.01 and 0.05 in pinching actions. Like Tap,
users have to pinch and un-pinch to select a target. Continuous pinching actions are ignored
by the system to reduce accidental selections.

(a) Ultraleap Stratos Explore (b) The complete experimental setup

Fig. 3. (a) The haptics device with the metal cover used in the study, (b) Participants sat about 700 mm
away front of a display. The Ultraleap device was placed on a small table closer to the users for comfortable
gesturing actions.

4.1 Ultrasonic Haptic Feedback

The system uses an Ultraleap Stratos Explore [57] haptics board (242 × 207 × 34 mm, 0.7 kg)
to provide mid-air haptic feedback (Fig. 3a). The device is a phased array composed of 16 ×

16 transducers that operate at a frequency of 40 kHz. The ultrasound waves produced by the
transducers focus on a point within 600 mm above the device. When focused on the hand or a
�nger, the mechanoreceptors in human skin sense the waves as pressure or vibration [9]. The
experimental system tracks the hand and the �ngers using a Leap Motion Controller, then aims
ultrasound waves at the tip of the index �nger. Due to the tracking limitation of the controller,
discussed earlier, it limits interactions between 200 to 600 mm above the haptics device. Its 700 ×
700 mm haptic interaction zone [57] was mapped to a 812.8 mm display using the SDKs default
linear function. The haptics board comes with two metal and three acoustic fabric frame-mounted
cover materials. The system uses a metal cover (Fig. 3a), however, we were unable to identify any
e�ect of the covers on user performance or preference in lab trials. The default Ultraleap SDK
includes several ultrasonic sensations and enables developers to create new ones. We designed two
di�erent types of sensations to provide mid-air feedback, described below.
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• Select. This method provides feedback on selection tasks by applying 30 × 15 mm sensation
on the �ngertip for 400 ms. It simulates a Lissajous curve with the default parameters
(0 = 3, 1 = 2) in the Ultraleap SDK. The sensation was drawn at a frequency of 40 Hz. The
dimension of the sensation was picked based on the average human �ngertip [13], while
the duration was picked in lab trials (50–800 ms) as it provided the most comfortable and
noticeable mid-air haptics feedback.

• Hover & Select. This method provides feedback on both hover (when the cursor is over a
target) and selection tasks. It uses the same mechanism as the Select feedback (30 × 15 mm
sensation via a Lissajous curve on the �ngertip for 400 ms), but the hover sensation at 80%
intensity and the select at 100% intensity (Fig. 4b).

5 METHOD

We conducted a Fitts’ law experiment to investigate the performance of mid-air selection methods
with and without ultrasonic haptic feedback.

5.1 Participants

Twelve participants took part in the experiment (" = 30.5 years, (� = 4.7). None participated in
the pilot study or the lab trials described earlier. Four identi�ed as female, eight as male. All had
university-level education. None were experienced with ultrasonic or other mid-air haptic devices.
However, two had used mid-air selection methods at least once in virtual reality. Ten self-identi�ed
as right-handed, one left-handed, and one ambidextrous. They received US $30 for participating in
the study.

5.2 Apparatus

The system described in Section 4 was launched on an ASUS ROG GU501GM Gaming Laptop with
Intel core i7 processor, 16 GB ram, NVDIA GeForce GTX 1060 graphics card, running on Windows
10 operating system. It was connected to an external display, HP Omen 32" gaming monitor at
2569 × 1440 pixels, where 1 pixel equals to 0.3 mm. The Fitts’ law experimental protocol described
in Section 3 was developed with Unity3D 2019.4.8f1.

5.3 Operation Area

The operation area was a 400 × 400 × 400 mm cubic area 200 mm above the haptic board (Fig. 4a).
The system mapped �nger movements in the x- and ~-axes inside the area to x-y coordinates
of the cursor on the computer display. Hence, the vertical operation plane was parallel to the
display. When the cursor was over a target, the haptic board provided 30 × 15 mm sensation using a
Lissajous curve on the �ngertip for 400 ms. This �xed feedback area was selected based on multiple
trials to provide comfortable feedback on the �ngertip. The feedback area did not change based on
the size of a target, instead the system dynamically changed feedback position based on movements
in the G or ~-axis, as appropriate. For example, when the user moved the �nger along the the x- or
~-axis but the cursor remained inside the target, the system adjusted feedback position to provide
seamless feedback on the �ngertip. Movements along the I-axis were ignored; that is, the cursor
did not change position based on movements in the I-axis. However, when the velocity of the
movement exceeded 100 mm/s, a Push gesture was registered. Movements in the I-axis were also
used to adjust the feedback position. For example, when the user moved the �nger along the I-axis
as the cursor remained on a target, the system dynamically changed feedback position along the
I-axis to provide seamless feedback on the �ngertip.
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(a)

(b)

Fig. 4. (a) Operation area in the experiment setup (the red shaded area) and (b) Lissajous curve with parameters
0 = 3, 1 = 2.

5.4 Procedure

The study started with a researcher explaining the research and demonstrating the system to the
participants. They then signed an informed consent form and completed a short demographics
questionnaire. They sat about 700 mm from the display with the haptics board placed on a small
table (Fig. 3b) to provide a comfortable and reliable gesturing position (i.e., 200 mm above the haptic
board). At this distance, a target of 100 pixels presents a visual angle of 2.46◦.
Participants were instructed to adjust the chair to a comfortable position, if needed. They then

took part in a 10-minute training block, where they selected 11 circular targets of 40 pixels in
diameter, arranged in a circle of 200 pixels in diameter, with the four mid-air gestures in a random
order. The main study started after that, where participants selected targets using the four selection
methods augmented with the three feedback methods in a counterbalanced order using a Latin
square. They were instructed to select the targets as quickly and accurately as possible without
compromising comfort. We enforced a 2-minute break after each three sequences and a 5-minute
break after each condition, to avoid fatigue. Participants could also request breaks at any point or
extend the duration of the mandatory breaks, when needed. After the completion of all conditions,
participants completed the NASA-TLX questionnaire [20] to rate the perceived workload of only the
four selection methods. The questionnaire was not used to rate all conditions to keep the duration
of the study within 60–90 minutes (Section 6.5). Participants also completed a custom questionnaire
to rate the examine haptic feedback methods’ e�ects on their performance and preference.

5.4.1 Safety Measures for COVID-19. All researchers involved in this study were fully vaccinated
for COVID-19. All participants were pre-screened for COVID-19 symptoms during the recruitment
process by a researcher, and on the day of the experiment by the host institute. Both the researcher
and the participants wore face coverings and sanitized their hands before a study session. The
researcher also maintained a three-foot distance from the participants at all times. All study devices
and furniture were disinfected before and after each study session. This protocol was reviewed and
approved by the Institutional Review Board (IRB).
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5.5 Design

The experiment was a 4 × 3 × 3 × 3 within-subjects design. The independent variables and levels
were as follows:

• Selection method (Push, Tap, Dwell, Pinch) counterbalanced
• Haptic feedback (None, Select, Hover & Select) counterbalanced
• Amplitude (80, 360, 640 pixels)
• Width (25, 50, 75 pixels)

There were 11 trials per sequence. The three amplitudes were selected based on the capability
of the haptic board and the motion sensor since they are not reliable with amplitudes outside
the 80–640 pixels range. Likewise, the three widths were selected based on the smallest width
recommended by the manufacturer (25 pixels) [37], while targets with widths over 75 pixels are
unrealistic.

5.5.1 Performance Metrics. The dependent variables in the experiment were throughput ()% ) and
movement time (") ), as described in Section 3, as well as target re-entries ()'�) and error rate
(�'). Target re-entries represent the total number of times the cursor re-entered the targets in
a trial after having entered them once (count/trial). Error rate signi�es the average percentage
of incorrect target selections per trial (%), where users performed a selection gesture outside the
target.

5.5.2 Graphical Feedback. The experimental software provided graphical feedback when the cursor
was over a target by changing the color from red to blue. This feedback was included based on a
pilot study, where some participants had di�culty selecting small targets in the no-haptic-feedback
conditions as they could not always tell if the cursor is over the target or at the edge. Because
this feedback was provided in all conditions, it is not a confounding variable in the study design.
Instead, since “changes in object coloring” is the the most common type of feedback provided for
target selection with mid-air gestures [33, 62], we argue that this decision increased the external
validity of the work.

6 RESULTS

A complete study session took about two hours to complete, including demonstration, question-
naires, and breaks. A Shapiro-Wilk test revealed that the response variable residuals were normally
distributed. A Mauchly’s test indicated that the variances of populations were equal. Hence, we used
a repeated-measures ANOVA for all quantitative within-subjects factors (Section 5.5). We report
e�ect size for all statistically signi�cant results. Eta-squared uses the Cohen’s [11] interpretation
where [2 = 0.001 constitutes a small, 0.5 constitutes a medium, and 0.1 constitutes a large e�ect.
There were in total 1,296 observations, none were excluded from the analysis as outliers.

6.1 Throughput

The grand mean for throughput was 2.04 bps. The breakdown by selection method and haptic
feedback is presented in Fig. 5a. By selection method, the highest throughput was 2.29 bps for Tap,
followed by 2.21 bps (Pinch), 1.92 bps (Push), and 1.75 bps (Dwell). The di�erences were statistically
signi�cant (�3,33 = 21.08, ? < .0001, [2 = .21). By haptic feedback, the highest throughput was
2.09 bps for the Select and Hover & Select, followed by 1.96 bps for the None. The di�erences
were statistically signi�cant (�2,22 = 5.80, ? < .01, [2 = .02). Pinch with Select yielded the highest
throughput (2.34 bps). However, the selection method × haptic feedback interaction e�ect was not
statistically signi�cant (�6,66 = 1.64, ? > .05).
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(a) Throughput (bps) (b) Movement time (ms)

Fig. 5. Average throughput and movement time by selection method and haptic feedback. Error bars represent
±1 standard error. Significant main e�ects are highlighted with red asterisks.

The breakdown by amplitude and width is presented in Fig. 6. By amplitude, the highest through-
put was 2.30 bps for 360 pixels, followed by 2.13 bps (640 pixels) and 1.71 bps (80 pixels). The
di�erences were statistically signi�cant (�2,22 = 67.17, ? < .0001, [2 = .24). By width, the highest
throughput was 2.10 bps for 50 pixels, followed by 2.07 bps (75 pixels) and 1.96 bps (25 pixels).
The di�erences were also statistically signi�cant (�2,22 = 5.31, ? < .05, [2 = .01). There was also
an amplitude × width interaction e�ect (�4,44 = 6.09, ? < .001). 360 × 75 pixels yielded the highest
throughput (2.38 bps).

(a) Push (b) Tap

(c) Dwell (d) Pinch

Fig. 6. Average throughput (bps) for the four examined mid-air gestures by amplitude × width and haptic
feedback.
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6.2 Movement Time

The grand mean for movement time was 1747 ms. The breakdown by selection method and haptic
feedback is presented in Fig. 5b. Tap was the fastest of all selection methods (1490 ms), followed by
Push (1749 ms), Pinch (1810 ms), and Dwell (19396 ms). The di�erences were statistically signi�cant
(�3,33 = 8.43, ? < .0005, [2 = .06). By haptic feedback, Hover & Select was the fastest (1698 ms),
followed by Select (1707 ms) and None (1837 ms). The di�erences were statistically signi�cant
(�2,22 = 5.54, ? < .05, [2 = .01). However, the selection method × haptic feedback interaction e�ect
was not statistically signi�cant (�6,66 = 1.34, ? > .05). A Tukey-Kramer multiple-comparisons test
revealed that Push and Tap + Hover & Select were signi�cantly faster than the other methods (∼20%
faster).

(a) Target re-entry (count/trial) (b) Error rate (%)

Fig. 7. Average target re-entry and error rate by selection method and haptic feedback. Error bars represent
±1 standard error. Significant main e�ects are highlighted with red asterisks.

6.3 Target Re-entries

The grand mean for target re-entries was 0.59 count/trial. The breakdown by selection method and
haptic feedback is presented in Fig. 7a. By selectionmethod,Dwell required the least number of target
re-entries (0.39 count/trial), followed by Tap (0.43 count/trial), Pinch (0.65 count/trial), and Push
(0.88 count/trial). The di�erences were statistically signi�cant (�3,33 = 16.46, ? < .0001, [2 = .05).
By haptic feedback, Hover & Select required the least number of target re-entries (0.56 count/trial),
followed by Select (0.59 count/trial) and None (0.60 count/trial). The di�erences were not statistically
signi�cant (�2,22 = 0.30, =B). There was also no signi�cant e�ect of selection method × haptic
feedback (�6,66 = 1.18, ? > .05). However, a Tukey-Kramer multiple-comparison test revealed that
Tap and Dwell caused signi�cantly lower target re-entries that Push and Pinch (∼50% lower).

6.4 Error Rate

The grand mean for error rate was 2.06%. The breakdown by selection method and haptic feedback
is presented in Fig. 7b. By selection method, Dwell was the most accurate with a 0% error rate,
followed by Tap (1.77%), Pinch (1.99%), and Push (2.32%). The di�erences were statistically signi�cant
(�3,33 = 25.33, ? < .0001, [2 = .05). By haptic feedback, Hover & Select was the most accurate (1.32%),
followed by Select (1.56%) and None (1.57%). The di�erences were not statistically signi�cant (�2,22 =
1.28, ? > .05). There was also no signi�cant e�ect of selection method × haptic feedback (�6,66 =
1.11, ? > .05). A Tukey-Kramer multiple-comparison test identi�ed Push to be signi�cantly more
error prone and Dwell to be signi�cantly more accurate than the other methods. The performance
of Tap and Pinch were comparable (1.8–1.9% error rate).
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6.5 User Feedback

Participants completed two questionnaires upon the completion of conditions. A NASA-TLX ques-
tionnaire [20] to rate the perceived workload of the selection methods and a custom questionnaire
to rate the perceived e�ects of the feedback methods on their performance (speed and accuracy) and
physical and mental comfort on a 5-point Likert scale. We did not use the NASA-TLX questionnaire
for all (4 × 3 = 12) conditions to limit the duration of the study. Besides, we argue that the overall
mental and physical workload of the selection methods and the perceived e�ects of the feedback
methods on user performance is more relevant to this work than the perceived workload of the
feedback methods. We used a Friedman test to compare user ratings of the examined selection and
haptic feedback methods.

(a) NASA-TLX questionnaire (b) Usability questionnaire

Fig. 8. Median perceived workload of the examined selection methods and perceived e�ects of the examined
feedback methods on user performance and overall comfort (physical and cognitive). Error bars represent ±1
standard error.

6.5.1 Perceived Workload of the Selection Methods. A Friedman test identi�ed a signi�cant e�ect
of selection method on mental demand (j2 = 10.32, 3 5 = 3, ? < .05), physical demand (j2 =

16.18, 3 5 = 3, ? < .05), performance (j2 = 11.24, 3 5 = 3, ? < .05), e�ort (j2 = 11.25, 3 5 = 3, ? < .05),
and frustration (j2 = 15.32, 3 5 = 3, ? < .005). However, no signi�cant e�ect was identi�ed on
temporal demand (j2 = 5.64, 3 5 = 3, ? = .13). Fig. 8a presents median user ratings of the four
selection methods.

6.5.2 Perceived E�ects of the Feedback Methods. A Friedman test identi�ed a signi�cant e�ect of
feedback method on speed (j2 = 11.42, 3 5 = 2, ? < .005), accuracy (j2 = 19.46, 3 5 = 2, ? < .0001),
and overall comfort (j2 = 8.67, 3 5 = 2, ? < .05). Fig. 8b presents median user ratings of the three
feedback methods.

7 DISCUSSION

Tap and Pinch outperformed Push and Dwell in terms of throughput (∼20% higher throughput,
large e�ect size). A Tukey-Kramer multiple-comparison test identi�ed these two groups to be
signi�cantly di�erent. Tap was also signi�cantly faster than the other methods (Fig. 5b). Dwell was
the slowest of all methods, as expected, since users had to wait for an 800 ms timeout period to
select a target. Target amplitude and width in�uenced the selection methods in accordance to the
Fitts’ law (large and small e�ect sizes, respectively, see Fig. 6).
Haptic feedback improved performance of all methods (small e�ect size). A Tukey-Kramer

multiple-comparison test identi�ed the methods with haptic feedback to be signi�cantly faster
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and more e�ective than without feedback. In particular, the performance of Push + Hover &
Select and Pinch + Select elevated closer to Tap (Fig. 5a). A Tukey-Kramer multiple-comparison
test identi�ed this improvement to be statistically signi�cant. It is important to note that haptic
feedback improved performance of all methods despite all providing graphical feedback on collision
to aid target selection (Section 5.5.2). This suggests that graphical feedback alone is not e�ective
enough to facilitate mid-air gestural interaction.

We speculate, two factors contributed towards Tap’s superior performance. First, based on user
responses, performing the gesture did not demand as much physical and cognitive e�ort as most
other methods (Fig. 8a). Second, it did not require a high level of spatial awareness since there
was no restriction on how much they could bend the �nger, which reduced the total number of
re-entries (Fig. 7a), improving its overall performance. A case in point, Push without feedback was
signi�cantly slower than Tap despite being a visually similar gesture (Fig. 5b). A Tukey-Kramer
multiple-comparison test revealed that it resulted in signi�cantly more target re-entries than Tap,
which increased the physical and cognitive e�ort (Fig. 8a) and a�ected the overall performance
(Fig. 5). Its 1.01 target re-entry rate suggests that participants frequently overshot the targets
(Fig. 7a), presumably due to the lack of special reference. With Push, participants moved the index
�nger forward, like pressing a virtual button in the 3D space. Due to the human physiology, this
also moved the hand. Without spatial references, it was di�cult for the participants to estimate
how far they should move the �nger to select a target, often moving it too much, which the system
interpreted as a pointing action rather than a selection action. This phenomenon has been observed
in other 3D interfaces. Hinckley et al. [23] argued that “to perform a [3D] task, the user’s perceptual
system needs something to refer to, something to experience” and “using a spatial reference [...] is one
way to provide this perceptual experience”. Consequently, target re-entries reduced by 18% and 21%,
and throughput increased by 11% and 18%, when Pushwas augmented with Select and Hover & Select
feedback methods, respectively, because the feedback provided the participants with a reference to
which they can adjust the �nger. Fig. 9 illustrates cursor traces from a random participant for Push
with the three feedback conditions, where one can see that Push without haptic feedback caused
multiple target re-entries but none when augmented with a haptic feedback method.

(a) Push with no feedback (b) Push with Select (c) Push with Hover & Select

Fig. 9. Cursor trace examples for Push (� = 360,, = 50 pixels) with the three feedback conditions.

Prior work reported that the performance of 3D interaction methods can improve substantially
with practice when spatial references are provided. In an early work, Badler et al. [5] reported
that providing users with spatial reference in 3D selection task can make a “consciously calculated
activity” to a “simple and e�ortless process”. Hence, the performance of Push with a haptic feedback
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can improve further over time. Relevantly, target re-entries for Tap and Dwell, which do not rely
heavily on spatial awareness, are much lower than the other methods (Fig. 7a). A Tukey-Kramer
multiple-comparison test revealed that Dwell was signi�cantly more accurate (0% error rate) than
the other methods, while Push was signi�cantly less accurate than Tap and Pinch. This is not
surprising since with Dwell the users did not have to perform any additional action but holding
the current �nger position for 800 ms. Tap was the second most accurate, presumably due to the
reasons discussed earlier.

Participants found Dwell the least physically and cognitively demanding (Fig. 8a), regardless of
it being signi�cantly slower than the other methods. We speculate this is because Dwell did not
require users to rely on their spatial awareness or perform a gesture that is di�erent than the one
used for moving the cursor. As a result, its performance did not improve much with haptic feedback
(Fig. 5). Tap was the second least physically and cognitively demanding. Interestingly, participants
found Pinch to be more physically demanding, e�ortful, and frustrating than the other gestures
despite it being more e�ective than Push and Dwell in target selection. This could be either because
Pinch was the only gesture that required the use of two �ngers or since it was misrecognized a
number of times during the study (about 1.5% of all instances). We discuss this further in Section 7.1.
All participants (N = 12) felt that haptic feedback improved their selection accuracy and the

overall physical and cognitive comfort (Fig. 8b). Likewise, most participants (N = 10) felt that haptic
feedback improved their selection speed, while the remaining participants (N = 2) were neutral
about it.

7.1 Technical Issues

A few technical issues were recorded during the study. First, the Leap Motion Controller seldom
stopped tracking the hand (0.01% of all cases). In such cases, we restarted the a�ected sequence.
Second, in general, the system was able to recognize the mid-air gestures with about 100% accuracy,
however, in a few occasions (about 1.5% of all cases), it was unable to recognize Pinch, in which
case, participants performed the gesture again. Finally, the haptic feedback methods were not as
e�ective when the hand was moving fast. However, our observation suggests that it did not a�ect
performance since participants usually slowed down when the �nger was closer to the target.

7.2 Generalizability in Di�erent Postures

In the study, participants were in a seated position and selected targets at shoulder level with
a bent or extended arm (Fig. 3b). One limitation of the work is it did not explore other possible
positions (i.e., standing) and postures (i.e., interaction plane between the shoulder and the waist, at
or below the waist, and with an bent arm). We speculate that the performance di�erences between
the gestures will be comparable in di�erent positions and postures in limited use. However, it is
possible that the performance of some gestures will be a�ected more than the others in extended
use due to increased “endurance”, which is de�ned as “the amount of time a muscle can maintain a
given contraction level before needing rest” [22]. Research showed that selecting targets at shoulder
level with an extended arm consumes more endurance than targets between the shoulder and
the waist [22]. The biomechanics of the upper limbs also suggest that selecting targets below the
waist (like on a kiosk) is likely to consume the least endurance as it does not require extending
the arm up, thus the arm remains closer to its resting position [16, 39]. Performing the gestures
standing up, in contrast, can consume more endurance since users cannot rest their arms on the
lap between the tasks. Further investigation is needed in this direction to fully understand the
e�ects of di�erent positions, postures, and gestures on endurance, and to �nd a de�nite answer to
whether the �ndings of this work are generalizable to all positions or postures.
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8 DESIGN RECOMMENDATIONS

Drawing on the �ndings of this work, we made recommendations for picking the most appropriate
mid-air selection method based on the type of tasks, performance priorities, and technological
limitations, summarized in Table 2. Although aiming for the top speed and accuracy in all interactive
systems may appear desirable, it is neither necessary nor possible or cost e�ective in all scenarios.
For instance, in a game where players score points by selecting big incoming targets as fast as they
can (e.g., fruit slice or slashing games), aiming for a comfortable and fast gesture that supports
repetitive performance is su�cient considering the target size and task frequency. Likewise, in
scenarios where accuracy is most preferred than speed and the task is not repetitive (e.g., entering
PIN on an ATM machine), a more accurate gesture is su�cient (since speed and comfort in non
repetitive tasks are not vital). Repetitive tasks are performed repeatedly for a longer period, like the
fruit slice game or in text entry. Non-repetitive tasks are performed occasionally, such as pressing
a virtual button to exit a window, open a �le, or to enter a few characters (e.g., PIN). Hence, the
methods appropriate for repetitive actions could be used for non-repetitive actions as well, but not
vice versa. We recommend using methods with high accuracy rates, especially for repetitive tasks,
since users tend to get impatient and frustrated with error prone gesture-based methods and deem
them unusable when error rate is over 3% [2]. However, all methods examined here yielded high
accuracy (below 2.5% error rates). Note that the table reports comfort in limited use (within an
hour) and does not account for fatigue in extended use.

Table 2. Recommendations for picking the most appropriate mid-air selection method based on the type
of tasks (repetitive or not repetitive actions), performance priorities (top, moderate, low), and technological
limitations (availability of haptic feedback). Comfort signify perceived workload. “Bps” indicates throughput
in bits/second (only throughputs of the best performed haptic feedback are reported). The highlighted fields
signify the best performed methods.

PriorityHaptic Feedback

(Recommended) Repetitions Accuracy Speed Comfort
Method Bps

Not Available

Low Moderate Top Low Pinch 2.09
Low Top Low Top Dwell 1.73

Moderate Moderate Moderate Moderate Push 1.75
Top Top Top Top Tap 2.27

Available

Low Moderate Top Low Pinch 2.34
Low Top Low Top Dwell 1.77
Top Moderate Top Top Push 2.07
Top Top Top Top Tap 2.31

9 CONCLUSION

We conducted a Fitts’ law experiment to compare the performance of four mid-air selection methods:
Push, Tap, Dwell, and Pinch, with and without two di�erent types of ultrasonic haptic feedback:
Select, Hover & Select. Results identi�ed Tap as the fastest, the most accurate, and one of the least
physically and cognitively demanding selection methods. Pinch performed well in terms of speed,
but yielded a much higher error rate and perceived workload. Dwell was the slowest of all methods
by design, but interestingly, the most accurate and the least physically and cognitively demanding.
Both haptic feedback methods improved performance of the selection methods, presumably by
increasing users’ spatial awareness. Particularly, the performance of Push, which relies on users’

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 565. Publication date: December 2022.



565:16 Dube, Ren, Limerick, MacKenzie, and Arif

spatial awareness, improved substantially with haptic feedback, making it comparable to Tap.
Besides, participants perceived the selection methods as faster, more accurate, and more physically
and cognitively comfortable with the haptic feedback methods.

10 FUTURE WORK

In the future, we will compare the e�ects of graphical, auditory, ultrasonic, and hybrid feedback
(combinations of graphical, auditory, ultrasonic feedback) on target selection performance. We
will also replicate the work in virtual and augmented reality to investigate whether the �ndings of
this work are pertinent to these settings. Further, we will explore the e�ects of ultrasonic haptic
feedback on additional mid-air gestures.
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