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Figure 1: Crownboard arranges eight zones (keys) in alphabetical order around the edge of a smartwatch. The zones are 
automatically highlighted one by one in clockwise direction. When the zone with the desired letter is highlighted, users press 
the crown to select it, and repeat the process for the other letters of the target word. A statistical decoder displays the most 
probable word as auto-complete suggestion directly in the input area in grayed-out text. Users can accept the suggestion by 
swiping left-to-right anywhere on the screen. The suggestion bar displays the remaining ten most probable words. To select a 
word from the suggestion bar, users tap anywhere on the screen to start highlighting the predicted words in sequential order. 
Pressing the crown again enters the highlighted word and exits the suggestion bar. This fgure depicts the process of entering 
the word “priority”. 

ABSTRACT 
Mobile text entry is difcult for people with motor impairments 
due to limited access to smartphones and the need for precise target 
selection on touchscreens. Text entry on smartwatches, on the other 
hand, has not been well explored for the population. Crownboard 
enables people with limited dexterity enter text on a smartwatch 
using its crown. It uses an alphabetical layout divided into eight 
zones around the bezel. The zones are scanned either automati-
cally or manually by rotating the crown, then selected by pressing 
the crown. Crownboard decodes zone sequences into words and 
displays word suggestions. We validated its design in multiple stud-
ies. First, a comparison between manual and automated scanning 
revealed that manual scanning is faster and more accurate. Sec-
ond, a comparison between clockwise and shortest-path scanning 
identifed the former to be faster and more accurate. In the fnal 
study with representative users, only 30% participants could use 
the default Qwerty. They were 9% and 23% faster with manual and 
automated Crownboard, respectively. All participants were able to 
use both variants of Crownboard. 
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1 INTRODUCTION 
Mobile text entry has come a long way since the introduction of 
short messaging service (SMS) in the late 1980s [85]. The ubiquity 
of touchscreens and development of virtual keyboards coupled 
with efective predictive systems have made text entry on mobile 
devices substantially faster and easier. Nowadays, mobile text entry 
is used not only to keep in touch with friends and family but also 
for access to various mobile services and to get work done. The 
ability to enter text on the go thus can foster productivity, social and 
networking abilities, independent living, and economic and social 
self-sufciency. However, mobile text entry remains a challenge 
to people with limited fne motor skills or dexterity. Fine motor 
skills or dexterity is the ability to make movements using the small 
muscles in the hands and wrists, which involves the coordination of 
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the muscles, the eyes, and the brain [93]. Dexterity can be afected 
due to various motor impairments caused by injuries (e.g., spinal 
cord injury), congenital and age-related conditions like cerebral 
palsy, muscular dystrophy, multiple sclerosis, spina bifda, ALS or 
Lou Gehrig’s disease, arthritis, Parkinson’s disease, and essential 
tremor. 

People with limited dexterity face various challenges in entering 
text with touchscreen-based mobile devices primarily due to the 
absence of tactile feedback and physical stability [12, 27, 40, 64, 
65, 67]. With physical interfaces, users can anchor their fngers 
on a physical key, and the need for pressing down the key for 
an input reduces the chances of accidental input. The absence of 
these feedback makes precise target selection difcult. As a result, 
feature phones1 remain a popular choice amongst the population 
[63]. However, features phones are not always easily accessible to 
the population. Many people with motor impairments fnd holding 
the device with one hand or getting the device out of pocket or 
purse physically challenging [66]. Some tend to address this issue 
by using a phone lanyard around the neck, but fnd it uncomfortable 
or fear standing out from the crowd [15]. Speech is a promising 
solution [39, 54], however, research revealed that users are usually 
reluctant to use the method in public places due to privacy and 
security concerns [19–21, 70, 73] and because the accuracy of the 
method is heavily afected by ambient noise [51, 66]. Speech is 
also not accessible to those who have motor impairments due to 
dysarthria or have a speech impairment. While discussing these 
issues with people with motor impairments in another research, 
a contemporary idea was proposed by the participants. Many of 
them suggested that a text entry technique for smartwatches that 
is efective in composing short messages can address many of these 
challenges. Smartwatches are worn on the wrist, thus users have 
easy access to those. Because it is a commonly used device, people 
with disabilities will ft in the crowd by not standing out. These 
fndings were further confrmed in a focus group study reported 
here. This inspired us to design an efective and accessible text 
entry technique for smartwatches for the population. 

Designing an accessible text entry technique for smartwatches 
is arguably a more challenging feat than that for smartphones due 
to the smaller screen space and limited processing power. It is clear 
that a stable means of interaction is needed rather than gestures, 
touch, or multi-touch that can be physically taxing and require high 
precision. Yet, most existing text entry techniques for smartwatches 
rely on precise target selection [4, 13, 29, 37, 69, 90] or perform-
ing fnger gestures on small interactive spaces [14, 29, 78], which 
are not compliant with the guidelines for accessible smartwatch 
interactions [27, 60]. Researchers recommended exploiting vari-
ous physical attributes of mobile/wearable devices (e.g., the bezel, 
physical buttons, etc.) as much as possible to provide access to the 
population [60, 77]. 

Crownboard is a novel scanning keyboard that enables text entry 
on smartwatches by rotating and pressing the crown located on 
the side of the device. The physical dial provides users with the 
much needed tactile feedback and enables them to anchor and rest 
their fnger on it. The need for pressing the crown to confrm input 
1Feature phone is a class of mobile phone that “retains the form factor of earlier genera-
tions of mobile telephones, typically with press-button based inputs and a small non-touch 
display” [1]. 

reduces the possibility of accidental input. Crownboard is mostly 
a single-key input method, with the exception of occasional taps 
and swipes on the display, which can be performed anywhere on 
the screen, thus does not require precise selection and facilitate 
accessibility [27, 88]. Finally, the layout is arranged around the 
bezel (Fig. 1), which does not occupy much of the screen space 
and reduces interface clutter, which can afect input performance 
[44, 78]. Fig. 2 illustrates the anatomy of a common round-shaped 
smartwatch. 

The remainder of the paper is organized as follows. First, we 
review the existing works in the area. We then present the fndings 
of a focus group that motivate and guide the work. Then, we dis-
cuss the optimization process of the keyboard design and present 
the fnal prototypes. We evaluate the prototypes in multiple user 
studies and discuss the fndings. Finally, we conclude the paper 
with potential future extensions of the work. 

Figure 2: Anatomy of a round-shaped smartwatch. 

2 RELATED WORK 
Numerous works have studied and proposed approaches for im-
proving access to larger touchscreen-based devices such as smart-
phones and tablet computers for people with motor impairments 
[3, 12, 16, 30, 31, 40, 62, 64–66, 88]. Accessibility of smartwatches, 
however, has not been well investigated in the literature. Malu et al. 
[60] evaluated diferent interaction approaches on smartwatches 
for people with upper body motor impairments. They found out 
that many participants are unable to complete button, swipe and tap 
interactions. In a follow up study, Malu et al. [61] compared touch-
screen input to input on the bezel of a watch, where touchscreen 
input was faster but the bezel was more accurate. 

2.1 Text Entry on Smartwatches 
Most keyboards for smartwatches resize the standard Qwerty 
layout to ft smaller screens. To facilitate the selection of smaller 
targets, i.e., virtual keys, these methods require users to either 
zoom-in on a specifc area, swipe between diferent areas, or drag 
the keyboard to focus on a specifc area [13, 37, 49, 69, 80], thus 
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require multiple actions to enter one letter. These methods occupy 
much of the screen real-estate and are slow by design due to their 
multi-step disambiguation process. Some miniature Qwerty key-
boards do not require multiple actions, instead rely on aggressive 
auto-correction models to correct any potential errors [29, 90, 95]. 
This, however, makes the entry of out-of-vocabulary words difcult, 
often impossible. Alternative approaches reduce the total number 
of keys in the layout by grouping multiple letters onto one key 
then disambiguating the input using sophisticated language and 
probabilistic models [38, 76, 91]. These methods also occupy much 
of the screen space and do not always support out-of-vocabulary 
words. Some keyboards use circular layouts that arrange the letters 
around the bezel of a smartwatch alphabetically [28, 33, 75], based 
on the Qwerty layout [14, 78], or through an optimization process 
[87]. These techniques free up screen real-estate but use interaction 
approaches that are difcult for people with limited motor skills 
to perform. Particularly, these methods enable text entry by either 
repeatedly tapping on the keys [14, 87], connecting the keys by 
swiping on the screen [78], performing wrist gestures [28], or rotat-
ing the watch’s bezel [96]. Some techniques assign diferent letters 
or keys to diferent fngers then diferentiate between the fngers 
using external hardware and sensors [32, 38]. These methods are 
impractical due to use of extramural devices. Arif and Mazalek [4] 
provide a comprehensive review of existing text entry techniques 
for smartwatches. Almost all of these techniques are designed for 
people with fne motor skills, thus use interaction approaches that 
are challenging, if not impossible, for people with limited dexterity 
to perform [60], such as tapping on tiny keys, performing gestures 
connecting tiny keys around the screen, performing wrist gestures, 
tapping with diferent fngers, and rotating the bezel, which also 
requires the use of multiple fngers. Besides, none of these methods 
were evaluated with people with motor impairments. 

2.2 Text Entry Techniques for People with 
Motor Impairments 

Siean and Vatavu [82] conducted a literature review of wearable 
interactions for users with motor impairments, which identifed 
a limited research on accessible wearable interactions and low 
numbers of participants with motor impairments involved in user 
studies about wearable interactions. Especially in the area of smart-
watch text entry, not much work focused on providing access to 
those with motor impairments. We, therefore, review text entry 
techniques aimed at other devices, particularly desktop platforms, 
which in theory could be adapted to smartwatches. These tech-
niques can be categorized into ambiguous and scanning keyboards, 
discussed below. Table 1 presents performance of popular text entry 
techniques for people with motor impairments from the literature. 
Relevantly, a survey revealed that median text entry rate for peo-
ple with physical disabilities is 5.6 words per minute on desktop 
platforms [47]. 

2.2.1 Ambiguous Keyboards. These keyboards assign multiple let-
ters per key, thus require a user-level or a software-level disam-
biguation process. These keyboards reduce the total number of 
keys, hence can display larger keys in a smaller screen space, which 
facilitates accessibility. However, a manual disambiguation process 
increases the total number of actions needed to enter a letter, which 

Table 1: Entry speed (words per minute) of popular text entry 
techniques for people with motor impairments. 

Method Speed Sample Device 

HandiGlyph [9] 
LURD-Writer [25] 
3DScan [26] 
CHANTI [84] 
Humsher [71] 

2.4 wpm 
1–2 wpm 
1–1.5 wpm 
1–4 wpm 
3–4 wpm 

1 
1 
1 
5 
4 

Pocket PC phone 
Computer 
Computer 
Computer 
Computer 

afects text entry speed. A software-level disambiguation process, 
on the other hand, reduces the total number of actions but makes 
out-of-vocabulary word entry difcult. Tanaka-Ishii et al. [86] de-
veloped a keyboard where the letters of the English alphabet were 
grouped into four keys in alphabetical order. It disambiguates the 
input using a simple language model. Harbusch and Kühn [34] de-
veloped a similar keyboard but grouped the letters into three keys 
based on letter frequencies. Dasher [92] enables text entry by us-
ing pointing devices. It arranges all letters of the English language 
alphabetically on one side of the display. To enter text, users move 
the cursor toward the desired letter, the system then predicts and 
displays the next most probable letters and words closer to the cur-
sor for easier selection. This process continues until the complete 
phrase is entered. The method can be used with a range of point-
ing devices, including a mouse, touchscreen, or cursor positioning 
with eye tracking and head movements. However, neither of these 
keyboards have been evaluated with motor impaired people. 

2.2.2 Scanning or Single-Switch Keyboards. These keyboards auto-
matically highlight the keys in a predetermined sequence, when the 
desired key is highlighted, users select it by performing an action, 
such as pressing a physical key or performing gestures, which are 
often referred to as a “switch”. Because these techniques enable 
text entry by using a single switch, they are the most common 
for people with motor impairments [72]. These keyboards can be 
categorized into two groups based on their scanning mechanisms. 

Some keyboards use a uni-level scanning mechanism that re-
quires highlighting only one level of keys. MacKenzie [56], Macken-
zie and Felzer [58], for example, developed the Scanning Ambiguous 
Keyboard (SAK), a four-key alphabetical layout that groups the Eng-
lish alphabet into three keys and includes a dedicated key for the 
Space character. The keys are highlighted in sequence. Users select 
the keys that contain the letters of the target word by pressing any 
key on the system keyboard, then select the Space key to see the 
most probable words. They, however, did not evaluate the keyboard 
with motor impaired people. In a follow-up work, Felzer et al. [23] 
replaced the switch of SAK (physical keypress) with intentional 
muscle contractions to further reduce the required physical efort. 
In an evaluation, one participant with Friedreich’s Ataxia reached 
an average entry rate of 2.8 wpm with the technique. Ashtiani 
and MacKenzie [7], in contrast, used eye blink as the switch. In an 
evaluation, able-bodied participants reached on average 5.3 wpm 
with the technique. Belatar and Poirier [9] decomposed the Eng-
lish alphabet into basic shapes, then grouped them into four keys. 
The keys are highlighted in sequence and selected by using a push 
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Table 2: Demographics of the focus group participants. 

Participant 
ID 

Gender Cause

P1 
P2 
P3 

Woman 
Man 

Woman 

31 
48 
37 

University 
University 
University 

Native 
Native 
Native 

Moderate 
Severe 
Severe 

Cerebral palsy 
Delayed development 
Multiple sclerosis 

Age 
Highest 
Degree 

English 
Profciency 

Level of 
Impairment 

button. In an evaluation, one participant with Locked-in Syndrome 
yielded on average 2.4 wpm entry speed with the technique. 

Some keyboards also use a multi-level scanning mechanism that 
usually requires scanning two (seldom more) levels of keys. Users 
frst select the frst group of characters, which starts scanning the 
characters in the group, users then select the intended character 
for input. Lin et al. [52, 53], for example, developed a two-level 
scanning keyboard arranged in a 3×3 grid, each grid containing 
nine letters, symbols, or modifer and navigation keys. With this 
technique, users frst select a grid, then a character or action in the 
grid. This technique was not evaluated in a user study. Felzer and 
Rinderknecht [26] developed a similar 4×4 grid layout, where each 
grid contains another 4×4 grid. In a study, one participant with 
Friedreich’s Ataxia yielded on average 1.4 wpm entry speed with the 
technique. Prabhu and Prasad [74] developed a circular keyboard 
that arranges eight smaller circles, each containing 1–7 letters, 
symbols, or modifer and navigation keys, around the circumference 
of a bigger circle. With this technique, users frst select a smaller 
circle, which replaces the content of smaller circles with the content 
of the selected circle. Users then select the smaller circle containing 
the target character. This technique was not evaluated with motor 
impaired people. There are also some dynamic layouts that change 
letter arrangements based on the previous input. We do not review 
those here since research has found these to be unusable by people 
with motor impairments [72]. The technique proposed here uses a 
hybrid scanning mechanism, where most words are entered using 
uni-level scanning, but lets users to switch to two-level scanning 
when the target word is in the suggestion bar. 

3 FOCUS GROUP: SMARTWATCH TEXT 
ENTRY 

We conducted a focus group to fnd out whether there is a need for 
text entry on smartwatches in the motor impaired community. The 
focus group discussed the challenges they face in entering text on 
mobile devices, the possibility of using smartwatch as a conduit 
to enter text, and potential design choices for a text entry tech-
nique for smartwatches to inform this research, further discussed 
in Section 3.2. 

3.1 Participants 
Three motor impaired people participated in the focus group. They 
were recruited through local accessibility and independent living 
Centers. The Centers distributed a call for participation via their 
emailing lists and shared fyers at social events. Those who were 
interested in participating in the study contacted us via email or 
phone. Table 2 presents their demographic information. They all 
used accessibility tools to operate mobile devices. One of them (P1) 

owned a smartwatch, which she used mainly to tell time and to 
receive mobile notifcations. They all received U.S. $20 Amazon gift 
cards for volunteering. 

3.2 Procedure 
Due to the spread of COVID-19 virus, the focus group was con-
ducted via a teleconference application. We shared the digital in-
formed consent form and the demographic questionnaire with po-
tential volunteers ahead of time for them to learn about the re-
search. Participants completed and signed all forms electronically. 
Initially, six participants signed the informed consent form, but 
three were unable to attend the focus group due to technical chal-
lenges and health related issues. In the focus group, participants 
were addressed by pseudonyms (e.g., Mr. A) to maintain anonymity. 

First, we re-explained the study procedure and answered all 
questions participants had. Then, we started the focus group with 
general questions about mobile text entry, such as, “do you or would 
you enter text on mobile devices”, “do you face any challenges in enter-
ing text on mobile devices”, and “could you describe these challenges” 
and whether they would be interested in a technique that enables 
text entry on smartwatches. Participants took turns in responding 
to the questions. We also enabled them to discuss their responses 
amongst themselves. However, we moderated the discussion to 
make sure that participants did not deviate from the topic. 

We then demonstrated four existing text entry techniques for 
smartwatches: 1) the default Wear OS Qwerty [10] that requires 
users to tap on individual keys, 2) WatchWriter [29] that uses a 
similar layout but enables users to gesture type by connecting the 
keys with the index fnger, 3) SwipeRing [78] that uses a circular 
Qwerty and enables both tapping and gesture typing, and 4) COM-
PASS [96] that enables entering text by rotating a watch’s bezel 
(Fig. 3). None of the participants had seen these methods before 
the study. Since we did not have access to the academic solutions 
[29, 78, 96], the demonstration occurred by showing video clips 
collected from the ACM Digital Library and YouTube. After each 
demonstration, we asked participants to mimic the actions needed 
to use the corresponding method on their wristwatches. Partici-
pants could ask to re-watch a video if they were unsure about its 
mechanism. We supervised this process to make sure that accurate 
actions were being performed. 

Finally, we demonstrated several custom circular alphabetical 
layouts using the same process. We then asked questions about 
their most preferred keyboard layout(s) for smartwatches (circu-
lar vs. block, alphabetical vs. Qwerty-based), scanning direction 
(clockwise vs. counterclockwise vs. shortest-path), scanning inter-
val (500–2,000 ms), and switch (tap vs. rotating the bezel vs. rotating 
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Figure 3: The four existing smartwatch techniques demonstrated in the focus group: (a) Wear OS Qwerty [10], (b) WatchWriter 
[29], (c) SwipeRing [78], and (d) COMPASS [96]. 

the crown vs. pressing the crown). The complete session was video-
recorded for qualitative analysis. This protocol was reviewed and 
approved by the Institutional Review Board (IRB). 

3.3 Results & Discussion 
We transcribed the complete focus group, then coded the data using 
a bottom-up approach for thematic analysis. The coding process 
used an iterative process to identify common themes in participant 
responses. 

3.3.1 Mobile Text Entry Challenges. We initiated the discussion 
by asking participants to share their smartphone usage behaviors. 
We then asked them to discuss the challenges they face in entering 
text on mobile devices. In response, participants shared many dif-
fculties that correspond to the fndings reported in the literature 
[3, 12, 16, 30, 31, 40, 62, 64–66, 88]. They all found precise target 
selection difcult due to the absence of tactile feedback, physical 
references, and various physical challenges (N = 3). Using feature 
phones was deemed as much easier by all because of the physical 
keys, but participants tend not to use these as they are not ideal for 
consuming multimedia, like reading newspaper articles or watch-
ing videos (N = 3). Interestingly, one challenge they all articulated 
about was accessing the device itself (N = 3). They all expressed 
physical difculties in getting the device out of pocket, purse, bag, 
or even fnding the device at home, which often discouraged them 
to check their mobile device or use it for composing text. To ad-
dress this, some wear the device around the neck with lanyards (N 
= 2), however, fnd it uncomfortable, heavy, and awkward in social 
settings. Some also found lifting the phone on lanyard difcult (N 
=2). For example, P1 stated, “In a public place, it’s hard for me to 
answer my regular phone because it’s on a lanyard”. None of them 
were frequent users of voice assistants (N =3), especially in public 
places, due to their unreliability in noisy places, and security and 
privacy concerns. P1 and P3 identifed the screen reader features 
of smartphones as unusable because they either require precise 
target selection or using fnger gestures like rotating or pinching, 
which they cannot perform. Hence, all participants relied on desk-
top computers for all text entry episodes, when possible (N = 3). P3 
commented, “I tend to use a computer [...] because computer is less 
responsive [causes fewer accidental input]”. 

3.3.2 Text Entry on Smartwatches. Participants were very receptive 
to text entry on smartwatches providing that the technique is usable 

and efective (N = 3). They felt that such a technique could resolve 
the access to device challenges since once worn, it remains on 
the wrist (N = 3). P1, who owned a smartwatch, could not use its 
default keyboard due to physical challenges. She also expressed 
her dissatisfaction with the device’s speech-to-text feature. P2 and 
P3 explored diferent smartwatches at stores but decided against 
purchasing one as they found them inaccessible. 

3.3.3 Keyboard Shape and Layout. All participants (N = 3) pre-
ferred circular keyboards over square/rectangular-shaped keyboards 
since they found the former to be minimalistic, less cluttered, and 
in general, more appropriate for smartwatches. They also preferred 
arranging the letters in alphabetical order assuming that it would 
be much easier for them to learn and use (N = 3). P2 commented, “I 
think the Qwerty keyboard’s [rectangular] shape fts with the idea of 
computer keyboard [...], but we’re talking about a watch and I think 
the idea of the letters going around [in a circle] alphabetically might 
be more intuitive”. P3 argued that locating the letters will be much 
easier on an alphabetical layout, while a Qwerty-based keyboard 
would have a steeper learning curve. They all agreed that starting 
the letters from the top of the layout (Fig. 1) is more intuitive (N = 
3). 

3.3.4 Scanning Group, Direction, and Interval. All participants (N 
= 3) were in favor of grouping the letters into zones to reduce 
the total number of keys. They identifed that scanning through a 
smaller number of zones would increase the keyboard’s usability 
and make it faster. P2 commented, “I think grouping letters would 
actually make the process faster”. They also felt that its resemblance 
to T9 [17] would make it easier for them to learn since they had 
used it on feature phones. In terms of scanning direction, all par-
ticipants (N =3) found the counterclockwise scanning unnatural. 
They were, however, undecided between the clockwise and the 
shortest-path scanning. The shortest-path uses an adaptive scan-
ning direction that highlights the zones in the direction closest to 
the most probable letters. For example, when clockwise scanning 
requires going through more zones to reach the most probable 
letters than counterclockwise scanning, the keyboard switches to 
counterclockwise for the next input and vice versa. Participants 
found the idea of shortest-path scanning intriguing but were unsure 
whether it would work in actual text entry episodes, thus wanted 
to test it before making up their minds (N = 2). P2 stated, “I like 
the idea of the most probable letter, or I could hate it. [It] could end 
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up being a disaster if your prediction of what the most likely letter is 
wrong”. P3 felt that clockwise scanning is the most natural because 
“... you know that there actually is going to be always the same, and 
we can anticipate [the direction]”. Due to the absence of a consensus, 
we further investigate this in Section 7. In the focus group, we 
demonstrated scanning intervals from 500 to 2,000 ms, of which 
participants picked 1,000 ms to be the most appropriate (N = 3). Yet, 
they wanted this value to be adjustable since users with diferent 
disabilities may prefer diferent intervals. They also noted that they 
could eventually prefer scanning intervals as low as 500 ms as they 
become more experienced with the keyboard (N = 2). 

3.3.5 Manual and Automated Scanning. Most participants (N = 2) 
preferred automated scanning to reduce physical eforts. P1 and 
P3 stressed that it is difcult for them to continuously rotate the 
crown of the watch. P1 commented, “I can’t really do the rotational 
aspect but I could press... I like [automated scanning] better, for the 
simple fact that you don’t have to rotate it”. P2, however, believed 
that manual scanning by rotating the crown is a possibility (N = 1). 
We compare these two approaches in Section 5. 

3.3.6 Switch Preference. Participants were unable to perform com-
plex multi-fnger gestures like pinching (N = 3). They were, however, 
able to perform taps and directional gestures (i.e., swipes) with one 
fnger (N = 3), providing that they could be performed anywhere on 
the screen (i.e., does not require selecting targets) and the gestures 
do not have to be of a specifc size. However, all participants pre-
ferred using the crown the most as they could anchor their fnger 
on it, and when pressed, feel a push-back sensation on the fnger 
(N = 3). P3 mentioned that the knob afords a more stable means 
of interaction, “I like the physical button [the crown] because if I’m 
having shaky hands that day, I don’t have to try to force my fnger 
to stay on one specifc spot versus pressing a button with thumb”. 
Participants also found it to be more user-friendly since touching 
the crown does not occlude the display (N = 3). Besides, two of 
them pointed out that the crown could be pressed with the knuck-
les and fnger joints, which makes it even more usable (a behavior 
we observed in the fnal study, see Fig. 14). Participants found the 
two-fnger action needed to rotate the bezel physically demanding. 
P1 commented, “ I couldn’t do the bezel, I could use only buttons 
[the crown].” P3 reasoned that although the bezel is larger than 
the crown, interacting with the latter is straightforward and more 
natural since it could be pressed or even rotated with one fnger. She 
commented “I mean, the crown seems the simplest since I don’t have 
to like get my whole hand involved... [Rotating the bezel] requires 
too much coordination!” Based on these fndings, we used crown 
press as the switch of our scanning keyboard. The keyboard also 

uses location- and size-agnostic taps and directional gestures (i.e., 
swipes) on the display to aford additional features. 

4 CROWNBOARD: DESIGN AND 
OPTIMIZATION 

The design goal of Crownboard was to strike the right balance 
between usability, learnability, and performance in terms of text 
entry speed and accuracy. Assigning all letters to one key makes 
interaction fast and easy but hurts the disambiguation ability of 
predictive models [56]. On the other hand, assigning dedicated keys 
to each letter eliminates the need for disambiguation but increases 
the scanning time and afects speed and accuracy. Therefore, we 
adapted a systematic approach to decide the total number of keys, 
the number of letters per key, which letters to group into each key, 
and the most efective scanning interval. 

4.1 Key Design 
The total number of keys in the layout was decided based on the 
optimal number(s) of letters per key, for which, we conducted a 
literature review of ambiguous smartwatch keyboards that use lin-
guistic models to disambiguate the input. We observed a correlation 
between the number of letters per key and entry speed. There seems 
to be a somewhat inverse relationship between them—the fewer the 
number of letters per key, the better the speed (Table 3). Consider-
ing this, and the fnding that fewer number of keys makes scanning 
keyboards more accessible to people with motor impairments [50], 
we explored 3–6 letters per key in the following steps. 

4.2 Layout Optimization 
We explored all possible layouts with 3 to 6 letters per key for the 
circular string {abcdefghijklmnopqrstuvwxyz} to fnd the least 
ambiguous alphabetical layout. One way to approach the problem 
is to redefne it as a search for a layout that has the minimal number 
of clashing bigrams for any given key within it, in other words, re-
duce frequent letter pairs in the keys. For example, “th” is the most 
frequent bigram, thus ‘t’ and ‘h’ must be on diferent keys. We prior-
itized this because participants of the focus group had difculties in 
pressing the crown repeatedly in short intervals. A prior work [94] 
also reported similar phenomenon causing “long keypress errors” 
due to pressing the key longer than the active key repeat delay. Re-
ducing common letter pairs on the same key forces users to wait for 
the next highlighted zone before the next keypress, which reduces 
the possibility of such errors. We did not focus on minimizing word 
pairs that have the same zones in their sequences except for one, 
however, addressed this in the disambiguation process described in 
Section 4.4. 

Table 3: Average text entry speed of ambiguous smartwatch keyboards that assign multiple letters to each key. 

Method Letters per Key Entry Speed 

Yi et al. [96] 3 9–13 wpm 
Jiang and Weng [42] 4–5 9.6–11 wpm 
Gong et al. [28] 4–5 10 wpm 
Dunlop et al. [18], Komninos and Dunlop [48] 3–6 8 wpm 
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Formally, let us denote the set of possible keys as �, set of all 
bigrams as �, frst and second letter within a particular bigram as �1 
and �2, respectively, and the frequency of a bigram �1�2 as � (�1�2). 
Then, the optimization goal corresponds to the following problem: ∑ 

min � (�1�2) � (key(�1, �) = key(�2, �)), (1) 
� ∈� 

�1�2 ∈� 

where � is the indicator function with a value of 1 if the evalu-
ated condition is true, and key(�, �) is the key to which letter � is 
assigned within the layout � . 

This minimization problem can be solved by a simple enumer-
ation (brute-force search) over all confgurations of the problem, 
with the total runtime of � ( |� | |� |). To generate the set of possible 
layouts �, we split the circular string into key sizes ranging from 3 
to 6 letters, which gave us a total of 27,560 diferent layouts. The 
set of bigrams � contains all 676 possible bigrams of the English 
language [68], we used bigrams.json fle [55] as a reference to our 
frequencies � (�1�2). To prevent numeric overfow, we scaled down 
all frequencies by multiplying them by 1.0 × 10−11, and report 
the scaled-down frequencies as the fnal scores. The layout with 
minimal ambiguity score (Eq. 1) was: {yza} {bcd} {efg} {hij} 
{klmn} {opq} {rst} {uvwx} with the value of 1.53, which we use 
in Crownboard (Fig. 1). This resulted in 48 mm2 (three letters) to 
64 mm2 (four letters) zones in Crownboard. For reference, the lay-
out with the worst score was: {xyzab} {uvw} {opqrst} {ijklmn} 
{cdefgh} with the value of 6.19. 

4.3 Scanning Interval 
A scanning interval is commonly used in text entry techniques for 
people with motor impairments [52, 53, 58] to automatically go 
over the keys by highlighting them until the desired key is selected 
by the user. The maximum possible entry speed of a scanning 
keyboard is reliant on the pace of its scanning interval. Slower 
scanning intervals can make users impatient and afect entry speed 
[74], while faster scanning intervals can cause too many errors, and 
even prevent users from using the technique [23]. To determine the 
most efective scanning interval, we conducted a literature review 
of scanning keyboards aimed at people with motor impairments. 
Table 4 presents a subset of these keyboards, only one of which was 
evaluated with the representative population. Other keyboards that 
were evaluated with motor impaired people [9, 22, 24, 26, 52, 71, 
72] either used a diferent scanning mechanism or did not report 
scanning intervals. The review revealed that scanning speed varies 
from 700 ms (fastest) to 2,100 ms (slowest). Based on this and the 

fndings of the focus group (Section 3), we decided to use a scanning 
interval of 1,000 ms. However, the system allows users to adjust the 
interval as needed. 

4.4 The Disambiguation Process 
Crownboard disambiguates the input (i.e., sequences of keys) into 
words. When there are multiple possible words for a sequence of 
keys, it automatically selects the most probable one and enables 
users to pick a diferent possible word from a suggestion bar. Users 
switch to the suggestion bar by tapping anywhere on the screen. 
Formally, given a key sequence � , Crownboard predicts the most 
probable word � from a vocabulary of � words �1, . . . ,�� using 
the following equation: 

� = arg max � (�� |�), (2) 
�� ∈�1,...,�� 

where � (�� |�) is the conditional probability of getting word �� 
given a sequence � . To compute these probabilities, we apply the 
Bayes’ rule, then replace probabilities by counts of the occurrences 
of the words/sequences in the training corpus: 

� (�� , �) count(prefx(�� ) = �)
� (�� |�) = = . (3)

� (�) count(�)
To efciently compute and store a conditional probability table of 

� (�� |�) for all possible words �� and sequences � , we use a binary 
prefx tree, also known as the Trie data structure. Once the tree is 
constructed, we trim it to contain at most � = 10 most probable 
words for each sequence � and save it to run on the smartwatch. It is 
a unigram word model, thus does not account for previously typed 
words. To address this, we accompany the model with a bigram 
model that predicts the most probable word �� , given a sequence 
of the keys � and the previously typed word �� . This requires com-
puting probabilities � (�� |�,�� ) by a straightforward extension of 
Eq. (3). Despite extending the model for bigram probabilities, it 
remains simplistic in nature, which is necessary to account for the 
limited processing power of smartwatches. Strengthening the de-
coder by conditioning on more than one previously typed words can 
potentially improve the performance of the keyboard. Employing 
recent machine learning models that can natively handle sequence-
level information (such as, LSTMs and Transformers) and training 
them on a substantial amount of data could potentially further im-
prove the disambiguation process. However, designing and training 
such models is challenging and outside the scope of this work. 

Table 4: Scanning intervals of scanning keyboards for people with motor impairments and the reported text entry speed. “R” 
signifes studies conducted with representative users, while “NR” represent non-representative (non-disabled) users. 

Method Participant Scanning Interval Entry Speed 

Ashtiani and MacKenzie [7] NR 700, 850, 1,000 ms 4.3, 5.3, 4.6 wpm 
MacKenzie [56] NR 1,100–700 ms 4–5 wpm 
Felzer et al. [23] NR 1,000–500 ms 2–7 wpm 
Belatar and Poirier [9] R (Expert) 754–118 ms 2–3 wpm 
Baljko and Tam [8] NR 750, 1,250 ms 2.6, 1.8 wpm 
Prabhu and Prasad [74] NR 2,100, 1,800, 1,500, 1,200 ms NA 
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Figure 4: The process of entering one letter at a time for out-of-vocabulary words. First, the user double-presses the crown 
to see each letter of the zone on the suggestion bar, highlighted one-by-one. The user then presses the crown to enter the 
highlighted letter ‘s’. 

4.5 Error Correction 
To reduce user actions, Crownboard appends a space when a word 
is selected automatically by the keyboard or manually from the 
suggestion bar by pressing the crown. To confrm the selection of 
the most probable word, which appears in the transcribed text area 
in greyed out font as auto-completion suggestion, users swipe from 
left to right anywhere on the screen. We used this gesture since 
the mapping was identifed to be very intuitive in a prior work [5], 
presumably because the movement of the cursor corresponds to 
the direction of the swipe. To delete the last entered word, users 
long-tap anywhere on the screen for 500 ms, which is comparable 
to existing scanning keyboards for touchscreens [56]. 

4.6 Out-of-Vocabulary Words and Special 
Characters 

Crownboard uses a multi-tap [41] inspired approach to enable the 
entry of out-of-vocabulary (OOV) words. When the zone containing 
the target letter is highlighted, users double-press the crown. A 
double-press is detected when the next press is performed within 
1,000 ms of the previous press. This duration was used to reduce 
unwanted selection of the next zone since the zones are scanned 
in every 1,000 ms. Upon double-press, each letter of the zone are 
displayed on the suggestion bar, highlighted one-by-one. Users then 
press the crown to enter the highlighted letter (see Fig. 4). We used 
this approach since many users are already familiar with multi-tap, 
which is likely to make learning and using the method easier due 
to knowledge and skill transfer. However, we did not evaluate this 
in user studies. 

The current prototype of Crownboard is optimized for the Eng-
lish language and does not enable the entry of uppercase letters, 
numbers, and special symbols. However, these features could be 
easily added by enabling users to switch between layouts for dif-
ferent languages, digits, and symbols by swiping right to left on 
the screen. Note that it is a common practice to evaluate novel text 
entry techniques without enabling numeric and special character 
entry to eliminate a potential confound [59]. 

4.7 Crown vs. Touch Interactions 
Crownboard is designed for motor impaired people who can ei-
ther lift up or rest the watch hand on a surface (e.g., armrest of a 
wheelchair) for interaction with the other hand. We maximized in-
teractions with the crown based on the fndings of the focus group 

and prior research that showed that people with motor impairments 
prefer and perform much better with physical buttons than precise 
target selection with touch [27]. Studies also showed that motor 
impaired people report higher levels of discomfort and commit 
substantially more errors with touch than physical alternatives 
[40, 81]. In addition to crown press, Crownboard uses double-press 
in special cases, particularly to switch to character entry mode for 
out-of-vocabulary words. We used double-press instead of double-
tap on the display since prior investigations found the latter to be 
physically challenging and time-consuming to perform by people 
with motor impairments [45, 89]. Unlike double-tap, users do not 
necessarily have to lift the fnger of the crown for double-press, 
rather can continue using it as an anchor for the second press, 
presumably, increasing usability. 

Crownboard uses taps and gestures on the screen that do not 
require precise selection, thus is easier for motor impaired people to 
use [89]. Trewin et al. [88] reported such action is “easy for everyone 
[with motor impairments] to perform[, as it] does not require fne 
positioning.” Relevantly, prior studies identifed 12 mm as an ideal 
target size for people with motor impairments for improved speed 
and accuracy [30, 67]. Another work [27] recommended using 18 
mm targets. With Crownboard, users have the complete 930 mm2 

display to perform the taps, much larger than the minimum size 
recommended in the literature. 

We conducted a simulation study to investigate crown and touch-
based interaction distribution in common text entry tasks with 
Crownboard. It predicted the total number and types of actions 
needed to enter the 500 short English phrases from the MacKen-
zie & Soukoref set [59]. This set is commonly used in text entry 
research since it includes phases that are moderate in length (M 
= 28.61 characters) and highly correlate with character frequency 
in the English language. The phrases do not contain any numeric 
or special characters. There are some uppercase characters, which 
were converted to lowercase in investigations. For simplicity, the 
simulation assumed that no errors were committed in the process 
of text entry and users selected a suggestion when it matched the 
target word. The simulation revealed that to enter the phrases with 
the manual Crownboard (described in Section 5.1), in total 31,713 
actions are needed, of which 89% are crown-based. Likewise, the 
automated version requires 13,913 actions in total, of which 74% 
are crown-based. Fig. 5 illustrates these fndings. This demonstrates 
Crownboard’s reliance on physical crown-based interactions to 
improve accessibility. 
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(a) Manual (b) Automated 

Figure 5: Distribution of crown and touch-based interactions in common text entry tasks with manual and automated Crown-

boards. The automated version does not require rotating the crown since the method automatically scans the zones. 

5 USER STUDY 1: MANUAL VS. AUTOMATED 
SCANNING 

In this study, we compared manual and automated scanning in a 
between-subjects design. The purpose was to identify the most 
efective rotation mechanism for the keyboard in terms of speed 
and accuracy. The study was conducted with non-disabled people 
since identifying, recruiting, and conducting in-person studies with 
motor impaired people was extremely difcult during the Coro-
navirus pandemic. Since the study focuses only on performance 
diference between rotation directions, we speculate the results may 
be generalizable to the target population, and can shed light onto 
whether non-disabled people can use Crownboard in situational 
impairments [79]. 

5.1 Manual Crownboard 
For this study, we developed a manual version of Crownboard that 
requires users to rotate the crown to scan the zones for selection. 
Rotating the crown upward scans the zones in clockwise direction 
and rotating the crown downward scans the zones in counterclock-
wise direction. All other interactions are identical to Crownboard. 

Fig. 6 demonstrates the process of entering words with manual 
Crownboard. 

5.2 Participants 
Sixteen participants voluntarily took part in the study. They were 
recruited by distributing a call for participation through the local 
university emailing lists and regional social media channels. Those 
who were interested in participating contacted us via email, phone, 
or private messages on our social media profles. We divided par-
ticipants into two groups: manual and automated. An attempt was 
made assure that the groups are somewhat comparable in terms 
of age, gender, and mobile device experience. Table 5 presents de-
mographic information of these groups. None of them reported 
having a condition limiting their fne motor skills. Each participant 
received U.S. $15 for volunteering. 

5.3 Apparatus 
We used an LG Watch Style smartwatch, 42.3×45.7×10.8 mm, 9.3 
cm2 circular display, 46 grams, running on the Wear OS at 360×360 
pixels in the study. We decided to use a circular watch in the study 
since it is the most popular shape for (smart)watches [43, 46]. We 

Figure 6: The process of entering the word “drink” with manual Crownboard. The user rotates the crown upward to scan the 
zones in clockwise direction. When the key with the letter ‘d’ is highlighted, she presses the crown to select it. The user then 
rotates the crown downward to scan the zones in counterclockwise direction, selects the zone containing the letter ‘r’, then 
continues scanning in the same direction to select the zone containing ‘i’. The user notices the target word in the suggestion 
bar. She taps anywhere on the screen to start scanning the suggested words by rotating the crown, then selects the intended 
word by pressing the crown. 
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Table 5: Demographics of the two user groups in the frst user study. 

Manual Automated 

Age 
Gender 
Handedness 
Experience with mobile devices 
Experience with smartwatches 

M = 27.5 years (SD = 3.7) 
1 female, 7 male 
7 right, 1 left 
M = 10.3 years (SD = 1.2) 
M = 1.30 years (SD = 1.7) 

M = 28.9 years (SD = 2.7) 
3 female, 5 male 
7 right, 1 ambidextrous 
M = 10.3 years (SD = 3.1) 
M = 0.8 years (SD = 1.1) 

Figure 7: Participants entering text with the manual (left) and the automated Crownboard (right) in the frst user study. 

developed both versions of Crownboard with Android Studio 4.0, 
SDK 26. Both versions calculated all performance metrics directly 
and logged all interactions with timestamps. 

5.4 Design

The study used a mixed-design with one between-subjects inde-
pendent variable: method (two conditions: manual, automated) and 
one within-subjects independent variable: block (fve blocks). We 
decided to use a mixed-design to avoid interference between the 
conditions. Since both methods use the same layout, the skills ac-
quired in one condition could have afected the performance of the 
other condition in a within-subjects design [57]. We divided the 
participants into two separate groups: manual and automated, with 
eight participants each. The groups used the technique assigned 
to them to enter short English phrases from the MacKenzie and 
Soukoref [59] set in fve blocks. Each block contained eight ran-
dom unique phrases from the set. In summary, the design was: 2 
groups (manual, automated) × 8 participants × 5 blocks × 8 random 
phrases = 640 phrases in total. The dependent variables were the 
following commonly used performance metrics: 

• Words per minute (wpm) signifes the total number of 
words entered in one minute, where a “word” is defned as 
fve characters including letters, spaces, and other printable 
characters [6]. 

• Error rate (%) is the average percentage of erroneous char-
acters remaining and correct characters missing in the f-
nal transcribed text. In other words, it is the ratio of the 
total number of incorrect and missing characters in the tran-
scribed text to the length of the transcribed text. 

5.5 Procedure 
We conducted a study with only one participant at a time in the 
lab. First, we explained the procedure and answered to all questions 
participants had, after that, we collected the consent forms. We then 

asked them to answer questions about demographic and mobile 
usage experience. After that, we introduced the keyboard assigned 
to them, instructed them to sit in front of a desk, and wear the 
smartwatch on the hand they prefer. However, to increase the 
external validity of the study, we enforced the use of only one 
fnger for interaction with the device. All participants wore the 
smartwatch on their left hand, rested the arm on the table, and 
performed the actions using the index fnger (Fig.7). 

We asked participants to practice with the keyboard assigned to 
them by transcribing 2–3 phrases from the MacKenzie and Souko-
ref [59] set. These phrases were not repeated in the study. The 
main study started after this short practice session. There were 
fve blocks per condition, with eight random unique phrases per 
block. We enforced a 2–3 minutes gap between the blocks to reduce 
any potential efects of fatigue. During the study for both meth-
ods, the phrases were presented one by one at the top part of the 
smartwatch (Fig. 7). Participants were asked to read a presented 
phrase carefully, transcribe it “as fast and accurate as possible”, then 
swipe from top to bottom anywhere on the screen to see the next 
phrase. The transcribed phrase was displayed at the bottom part 
of the smartwatch screen. Error correction was recommended but 
not forced. Upon completion, participants answered to a short post-
study questionnaire about the assigned method’s speed, accuracy, 
learnability, ease-of-use, and their willingness-to-use the method 
on smartwatches on a 5-point Likert scale. They also took part 
in a debrief session where they were asked about any potential 
strategies used to enhance the performance of the method assigned 
to them. 

All researchers involved in this study were fully vaccinated for 
COVID-19. Participants were pre-screened for COVID-19 symp-
toms during the recruitment process by a researcher and on the 
day of the experiment by the host institute. Both researchers and 
participants wore face coverings and sanitized their hands before 
study sessions. They maintained a 3’ distance from each other at 
all times. All study devices and surfaces were disinfected before and 
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Figure 8: (a) Average entry speed (wpm) and (b) error rate (%) per block, with both manual and automated Crownboard, ftted to 
power trendlines. 

after each study session. This protocol was reviewed and approved 
by the Institutional Review Board (IRB). 

5.6 Results 
A complete study session took about 60 minutes to complete, in-
cluding demonstration, questionnaires, and breaks. A Shapiro-Wilk 
test revealed that the response variable residuals were normally 
distributed. A Mauchly’s test indicated that the variances of pop-
ulations were equal. Hence, we used a mixed-design ANOVA for 
the quantitative factors. We used a Mann-Whitney U test on the 
between-subjects questionnaire data. 

5.6.1 Entry Speed. An ANOVA identifed a signifcant efect of 
method on entry speed (�1,14 = 20.03, � < .001). Average entry 
speed with manual and automated were 5.8 wpm (SD = 2.2) and 
3.9 wpm (SD = 1.5), respectively. There was also a signifcant efect 
of block (�4,4 = 18.55, � < .0001). The method × block interaction 
efect was also statistically signifcant (�4,56 = 3.90, � < .01). Fig. 8a 
illustrates average entry speed per block for both methods, ftted 
to power trendlines. 

5.6.2 Error Rate. An ANOVA failed to identify a signifcant efect 
of method on error rate (�1,14 = 0.05, � = .82). Average error rates 
with manual and automated were 2.3% (SD = 7.1) and 2.8 (SD = 9.0), 
respectively. There was also no signifcant efect of block (�4,4 = 
0.61, � = .65). Fig. 8b illustrates average error rate per block for 
both methods, ftted to power trendlines. 

5.6.3 User Feedback. A Mann-Whitney U test failed to identify 
a signifcant efect of method on perceived speed (� = 20.0, � = 
−1.30, � = .19), accuracy (� = 28.0, � = −0.47, � = .72), learnability 
(� = 28.0, � = −0.49, � = .72), ease-of-use (� = 17.0, � = −1.68, � = 
.13), or willingness-to-use (� = 26.0, � = −0.66, � = .57). Fig. 9 
illustrates median user ratings of the two methods. 

Figure 9: Median user ratings of the two methods on a 5-point 
Likert scale, where 1–5 signifes disagree–agree. Error bars 
represent ±1 standard deviation (SD). 

5.7 Discussion 
The manual Crownboard was signifcantly faster than the auto-
mated Crownboard (60% faster). This is not surprising as the 1,000 
ms rotation interval adds to the total time needed to select a zone 
[72]. Since the participants did not have a motor impairment, they 
could easily rotate the crown at the desired speed and strategize 
rotation direction to improve entry speed. In the post-study debrief 
session, six out of eight participants of the manual group reported 
that they intentionally switched the crown’s rotation direction to 
reach the desired zone faster. If the intended zone was closer from 
the left (i.e., fewer number of zones between the current and the 
intended zone), they rotated the crown counterclockwise, and vice 
versa. There was a signifcant efect of block on entry speed. Learn-
ing occurred with both methods. Average entry speed over block 
correlated well with the power law of practice [83] for both manual 
(�2 = 0.94) and automated (�2 = 0.91). However, participants’ entry 
speed improved at a much faster rate with manual than automated 
(Fig. 8a). Entry speed with manual improved by 45% from the frst 
block to the last, while the same with automated improved by 28%. A 
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post hoc Tukey-Kramer Multiple-Comparison test identifed three 
signifcantly diferent groups of blocks in manual: {1}, {2, 3}, {4, 5} 
and in automated: {1}, {2, 3, 4}, {5}. The fact that entry speed with au-
tomated improved by 10% from the fourth block to the last (Fig. 8a) 
suggests that the performance of this method is likely to improve 
further with practice. The methods were comparable in terms of 
accuracy. We did not observe learning between the blocks, instead, 
error rates were rather erratic (Fig. 8b), which is not unusual for 
word-based text entry methods [11]. When transcription errors did 
occur, participants misspelled entire words due to the selection of 
an incorrect zone or an incorrect word from the suggestion bar, or 
omitted them entirely. 

Subjective data revealed that almost all participants found the 
method assigned to them fast, accurate, easy-to-learn, easy-to-use, 
and wanted to use it on their smartwatches. The remaining partici-
pants were neutral. This is surprising considering the techniques’ 
slower entry speed compared to the state-of-the-art text entry tech-
niques for smartwatches [4]. This suggests that while the manual 
version may not be appropriate for motor impaired people, it could 
be an efective technique for people without disabilities. However, 
further investigation is needed to verify this. 

6 THE SHORTEST-PATH CROWNBOARD 
Results of the frst study revealed that non-disabled people perform 
much better with the manual Crownboard than with the automated 
version. Yet, we intended to improve the performance of the auto-
mated version based on the focus group with people with limited 
dexterity (Section 3.3) that revealed a desire for an automated ver-
sion since rotating the crown could be difcult at times. 

Based on the fndings that users tend to strategize the crown’s ro-
tation direction (that they intentionally switch scanning direction to 
reach the desired zone faster), we implemented a shortest-path ver-
sion of the automated Crownboard (Fig. 10). When users select the 
current zone �� by pressing the crown, Algorithm 1 automatically 
determines the scanning direction (clockwise or counterclockwise) 
to enable faster zone selection. 

First, it fnds the next probable letters (�1 and �2 in Algorithm 1) 
which are calculated using the bigram model described in Sec-
tion 4.4. If the most probable letter �1 has signifcant probability 
(greater than P(�2) by at least 0.1 score), it chooses the shortest 
direction towards the zone that contains the letter �1, denoted as 
direction(zone(�1), �� ). Otherwise, the algorithm makes decision 
based on the probability of zones instead of letters. It fnds the most 
probable zones �1 and �2 where the probability of each zone is de-
fned as the combined probability of letters in that zone. If the most 
probable zone �1 has a signifcant probability (greater than P(�2) 
by at least 0.1 score), it chooses the shortest direction towards the 
zone �1. Otherwise, it chooses the side that has the most probability 
(total sum of probabilities of zones in that side). The probability 
of the left side is denoted as �left, when �left > 0.5 it chooses scan-
ning in the counterclockwise direction. Algorithm 2 computes the 
shortest-path direction between the current zone �� and the target 
zone �. It is achieved by counting the total number of zones between 
� and �� in both directions, then choosing the direction that has 
the least number of rotation steps. Fig. 10 demonstrates the process 
of entering words with shortest-path Crownboard. 

Algorithm 1: Shortest-path Crownboard Scanning Direc-
tion 
Input: Previous typed word � , currently typed sequence � , 

last used zone �� 

Function ShortestPathCrownboard(�, �, �� ): 
�1 = argmax� ∈letters� (letter = � |�, �)
�2 = argmax� ∈letters� (letter = � |�, �) s.t. � (letter = 
� |�, �) < � (letter = �1 |�, �)
if � (letter = �1 |�, �) > � (letter = �2 |�, �) + 0.1 or 
zone(�1) = zone(�2) then 

return direction(zone(�1), �� ) 
else 

� (zone = � |�, �) := 
Í 
� ∈� � (letter = � |�, �)

�1 = argmax� ∈zones� (zone = � |�, �)
�2 = argmax� ∈zones� (zone = � |�, �) s.t. � (zone = 
� |�, �) < � (zone = �1 |�, �)
if � (zone = �1 |�, �) > � (zone = �2 |�, �) + 0.1 or 
�1 = �2 then 

return direction(�1, �� ) 
else Í 

��� = � ∈left of �� 
� (zone = � |�, �)

if ��� � � > 0.5 then 
return counterclockwise 

else 
return clockwise 

end 
end 

end 

Algorithm 2: Direction Indicating the Shortest-path Be-
tween Two Zones 
Input: End zone �, starting zone �� 

Function direction(�, �� ): 
if � = �� or |� − �� | = 4 then 

return no preference, keep current direction 
else if �� > � and �� − � ≤ 3 or �� < � and � − �� > 3 
then 

return counterclockwise 
else 

return clockwise 
end 

7 USER STUDY 2: CLOCKWISE VS. 
SHORTEST-PATH SCANNING 

The purpose of this study was to investigate whether the shortest-
path version of Crownboard improves performance in terms of 
entry speed and accuracy. This study was also conducted with 
non-disabled people for the reasons discussed in Section 5. 

7.1 Participants 
We had twelve participants in the study, recruited using the same 
procedure as the frst user study (Section 5). None of them partic-
ipated in the previous user studies. Table 6 presents their demo-
graphic information. None of them reported to have a condition 
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Figure 10: The process of entering the word “cares” with the shortest-path Crownboard. Initially, the keyboard starts to highlight 
the zones in a clockwise direction. When ‘c’ is selected, the keyboard switches scanning in counterclockwise direction since the 
most probable zones are on that side (combined probability: 0.9432). When the zone containing ‘a’ is selected, the keyboard 
continues highlighting the zones in counterclockwise direction since the next most probable letter ‘n’ (probability: 0.9432) is 
closer in that direction. This process continues until the word is confrmed by the user. 

that limited their fne motor skills. Each participant received U.S. 
$15 for volunteering. 

Table 6: Demographics of the participants in the second study. 

Age M = 28.7 years (SD = 7.2) 
Gender 
Handedness 
Experience with mobile devices 
Experience with smartwatches 

6 female, 5 male, 1 non-binary 
12 right 
M = 12.1 years (SD = 5.6) 
M = 1.0 year (SD = 2.1) 

7.2 Design 
We used a within-subjects design for this user study, where the 
independent variables were: method (two conditions: clockwise, 
shortest-path) and block (5 blocks). We counterbalanced the con-
ditions to reduce any potential efects of order. Each participant 
used both methods and entered short English phrases from the 
MacKenzie and Soukoref [59] set in fve blocks. Each block con-
tained fve random unique phrases from the set. In summary, the 
design was: 12 participants × 2 methods (clockwise, shortest-path) 
counterbalanced × 5 blocks × 5 random phrases = 600 phrases in 
total. The dependent variables were the same performance metrics 
recorded in the previous study (Section 5.4). 

7.3 Procedure 
We used the same procedure and safety measures as the previous 
study (Section 5.5). But unlike in the previous study, each participant 
practiced and entered text with both methods in a counterbalanced 
order (Fig. 11). 

7.4 Results 
A complete study session took about 60 minutes to complete, in-
cluding demonstration, questionnaires, and breaks. There were 
no signifcant efects of the order of conditions on the dependent 
variables (� > .05), which suggests that counterbalancing worked 
[57, pp. 177–180]. A Shapiro-Wilk test revealed that the response 
variable residuals were normally distributed. A Mauchly’s test indi-
cated that the variances of populations were equal. Hence, we used 
a repeated-measures ANOVA for the quantitative factors. We used 

a Wilcoxon Signed-Rank test on the within-subjects questionnaire 
data. 

7.4.1 Entry Speed. An ANOVA identifed a signifcant efect of 
method on entry speed (�1,11 = 6.11, � < .05). Average entry speed 
with clockwise and shortest-path were 3.5 wpm (SD = 1.2) and 3.1 
wpm (SD = 1.1), respectively. There was also a signifcant efect of 
block (�4,44 = 6.05, � < .001). However, method × block interaction 
efect was not statistically signifcant (�4,44 = 0.49, � = .74). Fig. 12a 
illustrates average entry speed per block for both methods, ftted 
to power trendlines. 

7.4.2 Error Rate. An ANOVA identifed a signifcant efect of method 
on error rate (�1,11 = 10.18, � < .01). Average error rates with 
clockwise and shortest-path were 0.53% (SD =2.6) and 2.1% (SD = 
7.4), respectively. However, there was no signifcant efect of block 
(�4,44 = 0.42, � = .79) or method × block (�4,44 = 0.41, � = .80). 
Fig. 12b illustrates average error rate per block for both methods, 
ftted to power trendlines. 

7.4.3 User Feedback. A Wilcoxon Signed-Rank test identifed a 
signifcant efect of method on learnability (� = −2.12, � < .05). 
However, no signifcant efect was identifed on perceived speed 
(� = −0.99, � = .32), accuracy (� = −1.40, � = .16), ease-of-use 
(� = −1.73, � = .08), or willingness-to-use (� = −0.56, � = .58). 
Fig. 13 illustrates median user ratings of the two methods. 

7.5 Discussion 
The average entry speed of the clockwise Crownboard is compara-
ble to the previous study (3.5 vs. 3.9 wpm). It was signifcantly faster 
than the shortest-path Crownboard (13% faster). The post-study 
debrief session revealed that participants struggled with shortest-
path since they could not anticipate the direction of the rotation, 
which prevented them from learning the method (also reported 
in Section 3.3.4). This is also refected in the post-study question-
naire, where shortest-path was rated signifcantly more difcult 
to learn than clockwise (Fig. 13). It may be possible to facilitate 
the learning of the next probable zones by dynamically changing 
the background of the zones using gradients of the same color to 
indicate probability scores (deeper color: high probability, lighter 
color: low probability, like a heatmap). However, further investiga-
tion is needed to determine whether this improves entry speed by 
facilitating learning or not. 
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Figure 11: Participants entering text with the clockwise (left) and the shortest-path Crownboard (right) in the second user study. 
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Figure 12: (a) Average entry speed (wpm) and (b) error rate (%) per block, with both the clockwise and shortest-path Crownboard, 
ftted to power trendlines. 

Figure 13: Median user ratings of the two methods on a 5-
point Likert scale, where 1–5 signifes disagree–agree. Error 
bars represent ±1 standard deviation (SD). Red asterisk indi-
cates a statistically signifcant diference. 

There was a signifcant efect of block on entry speed. Learn-
ing occurred to some extent with both methods. Average entry 
speed over block correlated moderately well with the power law 
of practice [83] for both clockwise (�2 = 0.8) and shortest-path 
(�2 = 0.8). Participants’ entry speed improved at a relatively faster 
rate with automated than shortest-path (Fig. 12a). Entry speed with 

automated improved by 22% from the frst block to the last, while 
the same with shortest-path improved by 20%. Relevantly, a post 
hoc Tukey-Kramer Multiple-Comparison test identifed three sig-
nifcantly diferent groups of blocks in clockwise: {1}, {2,3,4}, {5}, 
but no such diference was identifed in shortest-path. The fact that 
entry speed with clockwise improved by 11% from the fourth block 
to the last (Fig. 12a) suggests that the performance of this method 
is likely to improve further with practice. 

Interestingly, there was a signifcant efect of the method on error 
rate. Clockwise yielded a 74% lower error rate than shortest-path. 
This also supports the claim that participants had difculties with 
shortest-path due to the unpredictable nature of its rotation. There 
was no signifcant efect of block or method × block, yet average 
error rate over block correlated moderately well with the power law 
of practice [83] for clockwise (�2 = 0.8). Hence, there is a chance 
that the efect of block on accuracy will reach statistical signifcance 
with larger sample size. We observed an unexpected peak in the 
error rate of shortest-path in block 3. A deeper investigation failed 
to identify a distinct phenomenon causing this, hence we speculate 
this to be an outlier. Note that we did not remove any outliers in 
data analysis. 

Subjective data revealed that almost all participants found the ex-
amined methods fast, accurate, and easy-to-use. Participants found 



Crownboard: A One-Finger Crown-Based Smartwatch Keyboard for Users with Limited Dexterity CHI ’23, April 23–28, 2023, Hamburg, Germany 

Table 7: Participant demographics in the fnal study. “English” indicates profciency in the language, “phone” and “watch” 
indicate experience with using smartphones and smartwatches in years, and “glasses” indicates whether participants wore 
corrective eyeglasses. 

ID Gender Age Degree English 
Phone 
(Years) 

Watch 
(Years) 

Glasses 
Cause of 

Limited Dexterity 

P01 Woman 72 University Native 20 0.5 Yes Age-related limited dexterity 
P02 Woman 48 Secondary Native 14 0 No Quadriplegic paralyzed from the shoulders down, uses 

the pinkie to type 
P03 Woman 37 University Native 19 0 Yes Multiple sclerosis 
P04 Man 65 Secondary Advance 15 8 Yes Dwarfsm, arthritis 
P05 Woman 65 University Native 20 0 Yes Age-related limited dexterity 
P06 Man 34 University Native 5 1 No Limited dexterity due to hand structure 
P07 Woman 30 Secondary Advance 4 2 Yes Brain injury related limited dexterity 
P08 Woman 62 Secondary Native 10 0 Yes Right carpal tunnel and shoulder surgery. Impingement 

to jaw, elbow, and shoulder. Pain-nerve illness 
P09 Woman 62 University Native 2 0 No C5-6 quadriplegic, a complete spinal cord injury 
P10 Woman 65 University Native 12 0 Yes Quadriplegic, C5-6 spinal cord injury 

shortest-path the most difcult to learn, for the reasons discussed 
earlier. Besides, unlike the previous study, most participants were 
neutral about using the methods on their smartwatches. 

8 USER STUDY 3: COMPARATIVE STUDY 
WITH REPRESENTATIVE USERS 

We compared the manual and the automated (clockwise) Crownboard 
with the default virtual keyboard on Wear OS (Qwerty with gesture 
typing and the predictive system enabled) in a user study involving 
people with limited motor skills. Based on the fndings of the previ-
ous study, we excluded the shortest-path version from this study, 
as users had difculties in learning the method. 

8.1 Participants 
Ten motor impaired volunteers took part in the study. They were 
recruited using the same procedure as the focus group study (Sec-
tion 3). Table 7 presents their demographics information. P03 also 
participated in the focus group. All participants responded that they 
use physical Qwerty to enter text on desktop and laptop computers 
and virtual Qwerty to enter text on smartphones. P01 and P09 also 
used virtual Qwerty to enter text on tablet computers. P10, on the 
other hand, used a stylus to write on tablets. She also occasionally 
used speech to enter text on smartphones. Each participant received 
U.S. $40 for volunteering in the study. 

8.2 Design 
The study used a within-subjects design. The independent variable 
was: method (three conditions: default Qwerty, manual, and au-
tomated Crownboard). All methods, including the Qwerty, were 
displayed on the smartwatch. The dependent variables were the 
performance metrics used in the previous studies (Section 5.4). 
Each participant used the three methods to enter short English 
phrases from the MacKenzie and Soukoref [59] set in four blocks. 
Each block contained two random unique phrases from the set. In 
summary, the design was: 10 participants × 3 methods (default, 

[(manual, automated) counterbalanced]) × 4 blocks × 2 random 
phrases = 165 in total (160 phrases for manual and automated, and 
5 phrases for default Qwerty). 

8.3 Procedure 
We used the same procedure and safety measures as the previous 
studies (Section 5.5), except for a few minor diferences. First, due 
to the unavailability of adequate means of transportation to the 
participants, the study was conducted in locations convenient to 
them (Fig.14). The researcher conducted a study with one partici-
pant at a time in a quiet place. Second, the default condition was 
always introduced frst considering that participants might not be 
able to use it at all, while the other two conditions were counter-
balanced. Third, we excluded the practice session to reduce the 
duration of the study. Finally, in addition to the usability question-
naire, participants completed the NASA-TLX questionnaire [36] to 
rate the examined methods’ perceived workload. This protocol was 
reviewed and approved by the Institutional Review Board (IRB). 

8.4 Results 
A complete study session took about 60 minutes to complete, in-
cluding demonstration, questionnaires, and interviews. In the study, 
none of the participants were able to complete all sessions with 
the default Qwerty. As a matter of fact, 70% of them (N = 7) were 
unable to transcribe even a single phrase with the method. The 
remaining participants (N = 3) could only enter 1–3 phrases, while 
committing numerous errors in the process. Their entry speed with 
manual (M = 2.67 wpm) and automated (M = 2.82 wpm) were 19% 
and 23% faster than Qwerty (M = 2.17 wpm). Likewise, their error 
rates with manual (M = 1.5%) and automated (M = 0%) were 83% 
and 100% lower than Qwerty (M = 8.9%). We, therefore, exclude 
Qwerty from all quantitative analyses. 

A Shapiro-Wilk test revealed that the response variable residuals 
were normally distributed. A Mauchly’s test indicated that the 
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Figure 14: P06 and P10 entering text with the manual (left) and the automated (right) Crownboard, respectively, in the fnal 
study. 

(a) Entry speed (wpm) (b) Error rate (%) 

Figure 15: (a) Average words per minute (wpm) and (b) error rate (%) per block for the user study with representative users, with 
both manual and automated Crownboard, ftted to power trendlines. 

variances of populations were equal. Hence, we used a repeated-
measures ANOVA for all quantitative within-subjects factors. We 
used a Friedman test for the questionnaire data. 

8.4.1 Entry Speed. An ANOVA failed to identify a signifcant efect 
of method (manual, automated) on entry speed (�1,9 = 1.57, � = .24). 
There was also no signifcant efect of block (�3,27 = 2.34, � = .09). 
Average entry speed with manual and automated were 2.41 wpm 
(SD = 1.13) and 2.09 wpm (SD = 0.78), respectively. Fig. 15a illustrates 
average entry speed per block for the methods ftted to power 
trendlines. A t-test failed to identify a signifcant diference between 
participants with and without eyeglasses both in terms of manual 
(� = .46) and automated Crownboard (� = .74). 

8.4.2 Error Rate. An ANOVA failed to identify a signifcant efect 
of method (manual, automated) on error rate (�1,9 = 0.40, � = .54). 
There was also no signifcant efect of block (�3,27 = 1.12, � = 
.36). Average error rates for manual and automated Crownboard 
were 0.75% (SD = 3.85) and 1.22% (SD = 4.15), respectively. Fig. 15b 
illustrates average error rate per block for both methods ftted to 
power trendlines. 

8.4.3 User Feedback. A Friedman test identifed signifcant efects 
of method (Qwerty, manual, automated) on perceived speed (�2 = 

14.29, df = 2, � < .001), accuracy (�2 = 15.68, df = 2, � < .0001), 
ease of use (�2 = 14.0, df = 2, � < .0001), and willingness to use 
(�2 = 9.25, df = 2, � < .01). However, no signifcant efect was 
identifed on learnability (�2 = 0.25, df = 2, � = .88). Fig. 16a 
illustrates median user ratings of the three methods. 

8.4.4 Task Load Index. For analysis, we considered raw NASA-TLX 
scores by individual sub-scales, a common practice in the litera-
ture [35]. A Friedman test identifed signifcant efects of method 
(Qwerty, manual, automated) on performance (�2 = 11.7, df = 
2, � < .01), efort (�2 = 6.06, df = 2, � < .05), and frustration 
(�2 = 6.73, df = 2, � < .05). However, there was no signifcant 
efects on mental demand (�2 = 0.24, df = 2, � = .89), phys-
ical demand (�2 = 1.52, df = 2, � = .47), or temporal demand 
(�2 = 3.71, df = 2, � = .16). Fig. 16b illustrates median NASA-TLX 
ratings of all methods. 

8.5 Discussion 
Participants yielded on average 2.1–2.4 wpm entry speed with 
Crownboard, which is encouraging considering that the median 
entry speed with commercial techniques for people with physi-
cal disabilities is 5.6 wpm on desktop platforms [47]. In fact, the 
proposed method performed better than some popular academic 
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(a) Questionnaire (b) NASA-TLX 

Figure 16: (a) Median user ratings of the three methods on a 5-point Likert scale, where 1–5 signifes disagree–agree and (b) 
median raw NASA-TLX [35] scores of the examined methods on a 20-point scale, where 1–20 signifes very low–very high, 
except for “performance”, where 1–20 represent perfect–failure. Error bars represent ±1 standard deviation (SD). Red asterisks 
indicate statistically signifcant diferences. 

accessibility solutions for desktop platforms, which yield 1–4 wpm 
on average (see Table 1). 

Only three participants (P01, P03, P05) were able to enter text 
with the default keyboard. P05 entered three phrases with a high er-
ror rate of 27% before giving up, while P01 and P03 could complete 
only one phrase each. These participants had mild to moderate 
motor impairments compared to the other participants. P01 and 
P05 had limited dexterity due to old age (mostly hand tremor), 
P03 showed early symptoms of multiple sclerosis, while the others 
had severe motor impairments (Table 7). Nevertheless, all partici-
pants were able to complete all blocks with the proposed methods, 
and those who could use the default method were 19–23% faster 
and 83-100% more accurate with the new methods. These results 
suggest that the proposed methods are more accessible to people 
with various levels of motor impairments. Subjective evaluation 
also supports this, where participants found the new methods sig-
nifcantly faster, more accurate, and easier to use than the default 
method (Fig. 16a). Although not statistically signifcant, we also fnd 
it encouraging that many participants found the proposed methods 
more (40%, N = 4) or as learnable (20%, N = 2) as the default method, 
especially because they all were users of Qwerty on their desktop 
and laptop platforms. Naturally, almost all of them (90%, N = 9) 
preferred to use these methods on their smartwatches than the 
default method (statistically signifcant), while one participant was 
neutral about it. 

Interestingly, there were no statistically signifcant diferences 
between the methods in terms of mental, physical, and temporal 
demands (Fig. 16). When enquired about this in the post-study 
interview, participants responded that they rated the demands of 
tapping on the display and rotating the crown, rather than the 
techniques under investigation. This confusion was caused by the 
phrasing of the questions, which asked, “How mentally demanding 
was the task?”, “How physically demanding was the task?”, and “How 
hurried or rushed was the pace of the task?”, where “the task” was 
interpreted as tapping and rotating. Note that we used the exact 

questions from the original questionnaire, without modifcations 
of any kind. Participants felt that tapping on the screen and rotat-
ing the crown are somewhat comparable in mental, physical, and 
temporal demands, but the techniques associated with them make 
the diference in performance and efort. This is refected in their 
responses to the subsequent questions, “How successful were you in 
accomplishing what you were asked to do?”, “How hard did you have 
to work to accomplish your level of performance?”, and “How insecure, 
discouraged, irritated, stressed, and annoyed were you?”. Participants 
found the new methods signifcantly better performed than the 
default method. They also felt that the default method required 
signifcantly more efort than the new ones, thus, were signifcantly 
more frustrated with it than the proposed ones (Fig. 16). 

One interesting observation is that not all participants used the 
index fnger to operate the crown. Six participants (P01, P03, P05, 
P06, P07, P08) used the index fnger, one participant (P02) used the 
little fnger, one participant used the middle fnger (P04), while the 
remaining two participants (P09, P10) used the upper joint of the 
thumb. In Fig. 14, one can see P10 operating Crownboard using the 
upper joint of the thumb. Relevantly, the possibility of using the 
other fngers and the joints and knuckles was also mentioned in the 
focus group (Section 3.3.6). This is an inspiring fnding since this 
extends the usability of the proposed methods beyond the scope of 
this work. 

Manual Crownboard was about 13% faster and 37% more accu-
rate than automated Crownboard, but these diferences were not 
statistically signifcant (Fig. 15). This is because there was not a 
general trend in performance with these methods—some partici-
pants performed much better with one method and some with the 
other (Fig. 17). We speculate this is due to personal preferences as 
we failed to identify any efects of age or severity of impairment 
on performance with the methods. Some participants praised the 
automated method, while others criticized it. P02 liked the auto-
mated method as it does not require rotating the crown, while P04 
criticized it, saying, “It takes longer [with the method] because if 
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Figure 17: Average words per minute (wpm) per block for each of ten participants (P01–P10) for the user study with representative 
users, with both manual and automated Crownboard, ftted to power trendlines and default Qwerty. 
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you miss the letter, you need to wait when it circles around.” There 
was no signifcant efect of block on entry speed. This is, presum-
ably, due to the brief exposure to the methods. Participants en-
tered only two phrases in four blocks. Yet, average entry speed 
over block correlated well with the power law of practice [83] for 
manual Crownboard (�2 = 0.96) and moderately for automated 
Crownboard (�2 = 0.54). This suggests that participants are likely 
to get much faster with both methods with practice. It is also im-
portant to note that the study used a fxed scanning interval of 
1,000 ms. In theory, entry speed will increase with a shorter inter-
val. Relevantly, prior research showed that users usually prefer and 
can use a much shorter dwell when they are more familiar with an 
approach [11]. The fndings of the focus group also corroborate this 
(Section 3.3.4). However, further investigation is needed to fully 
explore this. The manual and automated Crownboard were compa-
rable in terms of accuracy (0.0% vs. 0.45% ER). We did not fnd any 
signifcant diferences between the methods in subjective analyses. 
As discussed earlier, participants liked both methods signifcantly 
better than the default method. These results indicate that both 
automated and manual Crownboard can be efective in enabling 
people with limited dexterity to enter text on smartwatches, but 
people with diferent levels of motor impairments are likely to 
prefer diferent versions of the keyboard. 

9 CONCLUSION 
We presented a series of user studies to evaluate and compare dif-
ferent versions of Crownboard. In the frst study, we compared 
manual and automated clockwise scanning of Crownboard, where 
manual scanning was found to be faster and more accurate. In the 
second study, we compared automated clockwise scanning with 
a shortest-path scanning approach that scans towards the most 
probable zone. We found out that participants were unable to learn 
the shortest-path approach since they could not always anticipate 
the direction of the scan. Therefore, automated clockwise scanning 
was faster and more accurate than shortest-path. Finally, we con-
ducted a study with ten people with limited dexterity to compared 
the default smartwatch Qwerty with both manual and automated 
Crownboard. In the study, most participants were unable to use 
the default Qwerty but all could use both versions of Crownboard. 
Participants who could enter text with both techniques reached 
2.62 wpm with 0% error rate with manual and 2.25 wpm with 0.45% 
error rate with automated Crownboard, which were 9% and 23% 
faster than the default Qwerty. 

10 FUTURE WORK 
In the future, we will conduct a longitudinal study to investigate 
the learning of the methods. We will strengthen the decoder by 
applying machine learning approaches, such as long short-term 
memory (LSTM), transformer, etc. We will also improve the rotation 
algorithm of the shortest-path Crownboard. 
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