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Figure 1: TapStr is an unambiguous reduced-Qwerty that maps the standardQwerty in a single row divided into four zones.

Tapping on a zone enters the central character and stroking on a zone towards one of the eight characters around the border

enters the respective character. Dwelling for 500 ms upon a tap or stroke enters the uppercase letters or the secondary charac-

ters, distinguished using a smaller font (right). Dwelling for 1000 ms activates or deactivates Caps Lock. Stroking towards ‘↙’

switches the layout for numeric and special characters (right) and stroking towards ‘,’ switches the layout for emojis.

ABSTRACT

TapStr is a single-row reduced-Qwerty that enables text entry
on smartphones by performing taps and directional strokes. It is
an unambiguous keyboard, thus does not rely on a statistical de-
coder to function. It supports the entry of uppercase and lowercase
letters, numeric characters, symbols, and emojis. Its purpose is to
provide an economic alternative to virtual Qwerty when saving
touchscreen real-estate is more desired than the entry speed and
a convenient alternative when users do not want to repeatedly
switch between multiple layouts for mixed-case alphanumeric text
and symbols (such as a password). In a short-term study, TapStr
yielded about 11 WPM with plain phrases and 8 WPM with phrases
containing uppercase letters, numbers, and symbols.

CCS CONCEPTS

• Human-centered computing→ Text input; Gestural input.
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Virtual Qwerty has become the dominant method for text entry
on smartphones. It is evident that with enough practice, mobile
users can reach a competitive entry speed with virtual Qwerty
[12]. However, one problem with virtual Qwerty is that it occupies
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about 40% of a smartphone display. Saving smartphone real-estate
is crucial since cluttered display affects user performance [11]. Be-
sides, the saved space could be used to display more of what has
been entered so far to keep the user aware of the context of a chat
and the flow of a passage, which improves both writing speed [10]
and quality [22]. Besides, entering special characters, symbols, and
emojis is difficult with virtualQwerty (especially for novices) since
it requires users to repeatedly switch between multiple layouts (typ-
ically, four or more) for the intended characters. TapStr is a novel
single-row 65×8 mm reduced-Qwerty that occupies only about 7%
of a smartphone display. It uses only three layouts to enable the en-
try of alphanumeric and a range of special characters and emojis by
performing taps and directional strokes on the keyboard. The moti-
vation of TapStr is not to replace the conventional virtual Qwerty
but to provide an economic alternative when saving touchscreen
real-state is more desired than the entry speed (for example, when
users do not want to repeatedly scroll up and down to see the email
they are responding to or the video they are commenting on) and a
convenient alternative when users do not want to switch back and
forth between different layouts to enter mixed-case alphanumeric
text and symbols (for example, when entering a password or URL).

1 TAPSTR KEYBOARD

TapStr maps the standard Qwerty layout in a single row divided
into four zones. The zones are distinguished using different sheds
of grey (Fig. 1). TapStr uses the Qwerty layout to facilitate skill
transfer [7, 17], but occupies only 5.24 cm2 of a 74.5 cm2 smartphone
screen, when a virtual Qwerty occupies 23–29 cm2, freeing up
25–32% of the display. The first three 19.66×8 mm zones contain
nine characters each: one in the middle, four along the four sides,
and four in the four corners. Users tap on a key to enter its central
character and stroke towards the characters around the border to
enter the respective characters (Fig. 1). A stroke can be initiated
anywhere on the zone containing the target character and end
anywhere on the touchscreen, even outside the keyboard. TapStr
registers all touch-point movements over 10 pixels as strokes and
determines its direction based on the start and end points. This
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enables users to change the direction of a stroke midway when they
mistakenly stroked towards an incorrect character. For uppercase
letters, users first tap or stroke for the intended letter, then dwell
for 500 ms. If a dwell is activated by mistake, users can slightly
shift the finger to disable it. The keyboard provides visual feedback
on dwell by flipping the layout from lowercase to uppercase. The
layout returns to lowercase upon touch-up. Users can dwell for 1000
ms to enable (or disable) Caps Lock. The fourth 6×8 mm zone is
for Enter, Backspace, and Space, which are entered by an up-stroke,
tap, and down-stroke, respectively. Stroking towards ‘↙’ switches
the layout for numeric and special characters and vice versa (Fig. 1).
TapStr places all paired symbols side-by-side and groups similar
symbols together (e.g., places all mathematical operators on the
third zone) to facilitate mnemonic strategies. The layout categorizes
the most frequent symbols as primary characters and the least
frequent ones as secondary characters1. Primary and secondary
characters are visually distinguished in the layout using a bigger and
a smaller font-size (Fig. 1, right), respectively. Symbols are entered
using the same mechanism as letters: users tap or stoke to enter
the primary characters and dwell to enter the secondary characters.
Dwelling provides visual feedback by flipping the font-size of the
primary and the secondary characters. The ‘,’ symbol switches the
layout for emojis. However, we disable this feature in the study. We
also implemented a predictive system for the keyboard to enable
word prediction and auto-correction. This feature was also disabled
during the study to eliminate a penitential confounding factor.

2 RELATEDWORK

There are several reduced keyboards available for mobile devices.
Stick Keyboard [8] maps the four rows of Qwerty onto the home
row. Although designed for mobile devices, it was evaluated on
a desktop computer with a physical prototype, where it yielded
10.4 WPM. 1Line Keyboard [14] is a similar virtual keyboard for
tablets. With the support of a statistical decoder, it yielded 30.7
WPM in a longitudinal study. TenGO [21] maps Qwerty onto six
keys and uses four extra keys for Space, Backspace, Shift, and to
cycle through suggested words. This keyboard was not evaluated
in a user study. Gueorguieva et al. [9] designed a virtual keyboard
to enable text entry using Morse code. In a longitudinal study, it
reached about 7 WPM. Senorita [18] is a virtual chorded keyboard
that arranges all letters on eight keys laid out in a single row. In
a longitudinal study, it reached 14 WPM. Arif et al. [3] replaced
the Space, Backspace, Shift, and Enter keys of a virtual Qwerty
with directional strokes to make room for numeric and special
characters in the main layout. In a study, it yielded 17.4 WPM.
TaS [19] arranges all letters in a 4×2 grid alphabetically. Each key
contains one character in the middle and four characters along
the four sides. Similarly, TapFlick [15] maps Qwerty onto three
keys in a single row. Each key contains nine characters: one in
the middle, four along the four sides, and the remaining four in
the four corners. Like TapStr, both TaS and TapFlick use taps and
directional strokes for text entry. However, these keyboards occupy
about the same screen real-estate as conventional virtual Qwerty
1Due to the absence of a frequency table for symbols, we studied the state-of-the-art
virtual keyboards and assumed that all symbols that are placed on a higher layout
(which require fewer actions to access) are the most frequently used symbols and the
ones that are placed in lower layouts are the least frequently used symbols.

and do not fully support the entry of numeric and special characters.
Besides, some of these keyboards reviewed here are ambiguous,
thus rely on aggressive statistical decoders, which makes entering
out-of-vocabulary words very difficult, seldom impossible.

Recently, there has been a growing interest in miniature key-
boards for smartwatches [1]. The most relevant to our work is
SwipeKey [20] that arranges all letters of the English alphabet in a
4×2 grid in an alphabetical order. Each key includes four charac-
ters in the four sides, which are entered by performing directional
strokes. However, this keyboard does not support the entry of nu-
meric characters and special symbols.

Figure 2: The device and the app used in the study (left) and

two participants taking part in the study (right).

3 EXPERIMENT

We conducted a study to compare the performance of TapStr with
Gboard, the default Google Android keyboard [13].

3.1 Participants

Twelve participants aged 19–28 years (M = 21.5, SD = 3.1) took
part in the study (Fig. 2). Four of them were female and eight were
male. They all were proficient in English and experienced virtual
Qwerty users (M = 8 years of experience, SD = 2.04). Ten of them
were right-handed and two were left-handed. They all received US
$10 for volunteering.

3.2 Apparatus

The study used a Motorola Moto G5 Plus smartphone (150.2×74×7.7
mm, 155 g) running on Android OS 7.0 Nougat at 1080×1920 pixels.
All predictive features of the two keyboards were disabled to elimi-
nate a potential confound. Text entry performance was recorded
using WebTEM2, a freely available web application [2].

3.3 Design

The study used a within-subjects design. The independent variables
were keyboard and phrase, and the dependent variables were the
performance metrics. We recorded the standard words per minute
(WPM) and error rate (%) metrics. Words per minute is the average
number of words entered in oneminute, where a “word” ismeasured
as 5 characters [4]. Error rate is the average percentage (%) of
incorrect characters remained in the transcribed text. The study
2WebTEM: A web application to record text entry metrics, https://WebTEM.site

https://WebTEM.site
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used two phrase sets. Plain phrases are from the MacKenzie and
Soukoreff set [16] that are moderate in length (M = 29), contain a
few uppercase letters but no numeric or special characters. Mixed
phrases3 are from a different set [3] that are also moderate in length
(M = 37) but contain on average 7% uppercase letters, 10% numeric
characters, and 7% symbols. An example phrase from this set is
“$6.52 is way too much for a bottle of water!”. Hence, the design was:

12 participants ×
2 keyboards (Qwerty and TapStr, counterbalanced) ×
2 phrase sets (plain and mixed, counterbalanced) ×
15 phrases = 720 phrases, in total.

3.4 Procedure

The study took place in a quiet room. Upon arrival, we demonstrated
TapStr and explained the study procedure to all participants. We
then collected their consents. We enabled participants to practice
with TapStr by entering free-form text for about five minutes. We
did not ask them to practice with the Gboard since they all were
experienced users of virtual Qwerty. We then started the main
study that required participants to transcribe fifteen phrases from
two different sets (plain and mixed) using two different keyboards
(TapStr and Qwerty). The phrase sets and the keyboards were
counterbalanced to eliminate the effect of learning. In each condi-
tion, random phrases were presented on the top of the screen, one
at a time (Fig. 2). We instructed participants to read the phrases
carefully, transcribe them as fast and accurate as possible, then press
Enter to see the next phrase. Error correction was encouraged but
not forced. Logging started after entering the first character and
ended with the last. We informed participants that they could take
breaks between the conditions or before they start typing a phrase.
Upon completion of the study, they completed a short questionnaire
that asked them to rate various aspects of the new keyboard.

4 RESULTS

For statistical tests, we removed all phrases that were missing more
than ten characters (9% of the data). We used a repeated-measures
ANOVA for all analysis since the data did not violate the normality
or the sphericity assumptions.

4.1 Entry Speed

An ANOVA identified a significant effect of keyboard (F1,11 = 11.49,
p < .01) and phrase (F1,11 = 13.40, p < .01) on entry speed. There was
no significant effect of block (F2,22 = 1.86, p = .18) but the keyboard
× block (F2,22 = 4.00, p < .05) and the keyboard × phrase × block
(F2,22 = 5.70, p < .05) interaction effects were significant. However,
the keyboard × phrase (F1,11 = 0.65, p = .44) interaction effect was
not significant. Fig. 3 illustrates average entry speed of the two
keyboards with plain and mixed phrases.

4.2 Error Rate

An ANOVA failed to identify a significant effect of keyboard (F1,11
= 0.55, p = .48), phrase (F1,11 = 1.48, p = .25), or block (F2,22 = 0.87,
p = .43) on error rate. The keyboard × block (F2,22 = 0.77, p = .48),
the keyboard × phrase (F1,11 = 1.64, p = .25), and the keyboard ×

3Mixed phrases, https://www.asarif.com/pub/mixedset.txt

Figure 3: Average entry speed of the two keyboards with

plain and mixed phrases. Error bars represent ±1 standard

deviation (SD).

Figure 4: Average error rate (%) of the two keyboards with

plain and mixed phrases. Error bars represent ±1 standard

deviation (SD).

phrase × block (F2,22 = 0.00, p = .99) interaction effects were also not
significant. Fig. 4 illustrates average error rate of the two keyboards
with plain and mixed phrases.

5 DISCUSSION

TapStr yielded a significantly slower entry speed (71.72%) thanQw-
erty. We anticipated this since participants were new to the layout,
thus needed time to learn it. Besides, TapStr requires performing
linear strokes to enter most characters, which most probably con-
tributed towards the slower entry speed. Prior research showed
that stroke lengths reduce with practice, as users get more familiar
with a new layout [3]. Hence, it is possible that the keyboard will
yield a much better entry speed in a longitudinal study. The 500 ms
dwell time for the uppercase letters and some special characters
may have contributed towards the slower entry speed as well. A
prior work attempted to mitigate this by gradually reducing the
dwell time as users get more familiar with the system [6]. Further
investigation is needed to find out whether this approach benefits
TapStr. Entry speed with both keyboards were much slower for

https://www.asarif.com/pub/mixedset.txt
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mixed phrases compared to plain phrases. This is also expected
as entering numbers and symbols requires extra effort with both
keyboards. But interestingly, entry speed with TapStr dropped at a
much lower rate (26%) compared toQwerty (41%), which indirectly
suggests that entering numbers and symbols with TapStr does not
require as much effort as Qwerty. Significant interaction effects on
entry speed suggest that entry speed during the study, particularly
for mixed phrases, improved with practice. A Tukey-Kramer test
confirmed that entry speed for mixed phrases was much faster in
the last block compared to the first block (p < .05). Besides, with
both Qwerty (𝑅2 = 0.94) and TapStr (𝑅2 = 0.88), entry speed over
the blocks for mixed phrases correlated well to the power law of
practice [5].

There was no significant main or interaction effects on error
rate. TapStr yielded a much higher error rate (2.69%) than Qwerty
(1.05%). A deeper analysis revealed that text entry with TapStr be-
came more accurate with practice (𝑅2 = 0.86), while no such trends
were observed with Qwerty. This is likely because participants
were already familiar with Qwerty, thus did not trigger as many
hit-and-miss as TapStr. Further, participants were becoming more
efficient in entering numbers and symbols with both keyboards
(Qwerty: 𝑅2 = 0.85, TapStr: 𝑅2 = 0.99), requiring fewer corrective
actions, which correlate well to the power law of practice [5].

Questionnaire data revealed that participants were not very en-
thusiastic about TapStr. Roughly half of them were against using
TapStr for both plain (42%, N = 5) and mixed phrases (50%, N =
6), while the remaining were neutral about it. This demonstrates
experienced virtual Qwerty users’ reliance and confidence in the
keyboard they are familiar with. Further investigation is needed
to find out if their initial impression of the keyboard changes after
using it for a longer period of time. Participants were mostly neutral
about the learnability of the new keyboard. About 25% of them (N
= 3) found the keyboard difficult to master, the remaining (N = 9)
were neutral.

6 CONCLUSION AND FUTUREWORK

This paper presented TapStr, an unambiguous reduced-Qwerty
that occupies only about 7% of a stock smartphone screen. It enables
the entry of uppercase and lowercase letters, numeric characters,
symbols, and emojis by taps and directional strokes. In a short-term
study, TapStr yielded on average 11 WPM entry speed for plain
phrases and 8 WPM for mixed phrases with only 2–3% error rate
without the support of a statistical decoder or a predictive system.
In the future, we will conduct a longitudinal study to investigate
if the performance and user preference of the keyboard improve
with practice. We will also explore the potential of the keyboard on
smaller devices like smartwatches.
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