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ABSTRACT 
This paper presents a new pressure-based error prevention 
technique for mobile touchscreen text entry. Two user 
studies were conducted to compare the new technique 
with a conventional virtual keyboard, one with novice and 
another with expert users. Results of the first user study 
showed that with practice the new technique significantly 
improves accuracy. Yet, no such indication was observed 
during the second study. 
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INTRODUCTION 
Virtual keyboards are more error prone than physical 
keyboards and keypads (Clawson et al., 2008). This is 
likely due to smaller key sizes and the absence of tactile 
feedback. Prior studies indicate that substitution errors, 
where wrong characters are pressed instead of the correct 
ones, are the most frequent error committed by mobile 
users (Clawson et al., 2008; Sad and Poirier, 2009). Here, 
we present a new pressure-based error prevention 
technique that attempts to improve touchscreen text entry 
performance by reducing substitution errors. 

THE NEW PRESSURE-BASED TECHNIQUE 
The main idea behind the new technique is to use the last 
entered character to generate in real-time a list of 
improbable next ones. As those characters are unlikely to 
appear, their matching keys are then made to be more 
difficult to activate. That is, users need to apply additional 
pressure on those keys to input such characters. The 
assumption here is that input attempts for those characters 
are unintentional and erroneous. We speculate that the 
new technique will not compromise text entry in a 
significant manner, as only normal pressure is required 
for inputting likely characters. The technique utilizes only 
two pressure levels, regular and extra, as studies showed 
that more than two pressure levels do not work well in 
text entry (McCallum et al., 2009; Wang et al., 2009). 
Regular pressure represents the force typically applied on 
touchscreens (approximately 1 N), while extra pressure is 
relatively more force than that (approximately 3 N). Here, 

we categorize users as novice if they have never used a 
touchscreen text entry technique before the study or had a 
very limited exposure to it. Expert users, on the other 
hand, are those who use such techniques frequently, i.e. 
almost every day. 

Simulation of Pressure Detection 
Currently, three software solutions are used to simulate 
pressure detection on standard touchscreens. The first is 
time-based and assumes that it takes more time to press a 
virtual button when extra force is applied (Ramos et al., 
2004). This method records the average time it takes to 
perform a task and uses that as a baseline. When users 
take longer than the baseline, the system deduces that 
extra pressure is applied. The second approach is contact-
area-based and simulates pressure detection by mapping 
changes in finger contact area to changes in pressure 
(Forlines and Shen, 2005). The third touch-point-based 
approach detects pressure based on the fact that the touch 
centre moves more when additional force is applied 
(Ramos et al., 2004). With this approach the average 
touch point movement for a task is used as baseline. 
Then, extra pressure is detected when the touch point 
moves a greater distance compared to the baseline. The 
main difference between the contact-area and the touch-
point-based approach is that the latter considers only the 
touch centre coordinates. As most current touchscreens 
do not provide contact area information, many 
implementations derive contact area from the touch 
coordinates with various heuristics. In comparison, the 
touch-point-based approach is simpler and likely more 
reliable. Hence, we used this approach here. 

Bigram Frequency Table 
We used a 27×27 bigram frequency table for all letter 
pairs in English, including the space character (Soukoreff 
and MacKenzie, 1995), to calculate the probability of a 
character’s appearance based on the preceding one. We 
use the following equation, also used by Soukoreff and 
MacKenzie, to calculate the appearance probability 𝑃 of a 
character 𝐶!: 

𝑃 𝐶!|𝐶!!! = 𝑇 𝐶!!!,𝐶! 𝑇!""  (1) 

Here, 𝑇(𝐶!!!,𝐶!) is the total number of occurrences of a 
specific bigram (𝐶!|𝐶!!!) and 𝑇!"" is the total number of 
bigrams in the table (here 107,199). Based on several 
pilots, characters with an occurrence probability less than 
0.01% were identified as unlikely. 

Other Methods for Predicting Unlikely Characters 
The use of frequency tables is common in text entry error 
prevention techniques. For example, the Automatic 
Whiteout++ technique uses a trigram frequency table 
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along with key proximity information and the time 
between the previous and the current keystroke to predict 
unlikely characters (Clawson et al., 2008). Here, we use a 
bigram frequency table for simplicity. Other choices 
exist, such as n-grams, a dictionary (Hoffmann, 2009), 
grammar rules, geometric pattern matching (Kristensson 
and Zhai, 2005), or language models (Goodman et al, 
2002). We assume that if our new technique can show 
performance improvements with a relatively simplistic 
prediction method, the use of more advanced methods 
will only further improve performance. 

EXPERIMENT I: NOVICE USERS 
We collected raw data from a prior study that compared 
the pressure-based technique with a timeout-based and 
the conventional text entry technique with novice users 
(Arif et al., 2010). Similar to the pressure-based technique, 
the timeout-based technique used the bigram frequency 
table to identify and list the unlikely next characters and 
made those harder to input. In order to input such 
characters users had to tap-hold the corresponding keys 
for longer than usual (500 ms). 

Apparatus 
An Apple iPhone 3G at 320×480 pixel resolution and 
163 ppi was used for the study. A custom application, 
developed with the default iOS SDK, was used. It logged 
all interactions with timestamps and calculated user 
performance directly. The application’s virtual keyboard 
was almost identical to iPhone’s default virtual keyboard. 
See Figure 1. It did not feature the default keyboard’s key 
enlargement feedback. Also, the “.?123” key to switch to 
a numerical keyboard and the Shift key were removed, as 
users were not required to input numeric or uppercase 
characters during the study. 

 
Figure 1. The device (Apple iPhone 3G) and the application 

used during the exploratory study. 

Participants 
Twelve participants, aged from 19 to 34 years, average 
26, took part in the user study. Five of them were female 
and all of them were right-handed. They were all novice 
users. That is, they did not own or use a touchscreen-
based device on a regular basis. Note that this study was 
performed in 2009, before modern smartphones became 
ubiquitous in Canada. 

Procedure and Design 
The user study compared three techniques: conventional, 
timeout-based, and pressure-based. Each technique was 
examined with and without synthetic tactile feedback in 
counterbalanced blocks. For the synthetic tactile feedback, 
the iPhone’s vibration motor was activated for 500 ms. 
During the study participants entered forty short English 
phrases in two blocks from a set (MacKenzie and Soukoreff, 
2003). Phrases were shown to them on the display, all in 

lowercase. Participants held the device in the portrait 
position and typed using both of their thumbs. They were 
asked to take the time to read and understand the phrases 
in advance, enter those as fast and accurate as possible, 
and then press the Return key when they were done to see 
the next phrase. 

Participants were provided with two practice phrases 
before each condition to assure that they were reasonably 
comfortable with the new techniques. Timing started 
from the entry of the first character and ended with the 
last. Participants were informed that they could rest 
between blocks or before typing a phrase. They were also 
asked to work normally, that is, to correct their errors as 
they noticed them. Yet they had to exclusively use the 
Backspace key for editing, as we made direct cursor 
control unavailable to remove a potential confound. Extra 
pressure was simulated when a users’ touch-point moved 
more than the usual. Based on several pilots we set a 
threshold of 0.7 mm. The study used a counterbalanced 
within-subjects design: 12 participants × 3 conditions × 2 
blocks × 20 phrases (10 with tactile feedback and 10 with 
no tactile feedback) = 1440 phrases. The commonly used 
WPM and Total Error Rate (TER) metrics were used to 
report text entry speed and accuracy, correspondingly 
(Soukoreff and MacKenzie, 2003). 

Results 
D’Agostino Kurtosis tests revealed that the data were 
normally distributed. A Mauchly’s test confirmed that the 
data’s covariance matrix was also circular in form. Thus, 
repeated-measures ANOVA was used. As prior analysis 
showed that there was no significant effect of synthetic 
tactile feedback on performance (Arif et al., 2010), we 
ignore the tactile feedback factor here. 

 
Figure 2. Average entry speed (WPM) with standard error 
(SE) during the two blocks for all investigated techniques. 

Entry Speed 
The ANOVA revealed that there was no significant effect 
of technique on entry speed (F2,11 = 1.35, ns). There was a 
significant effect of block (F1,11 = 11.80, p < .05). A 
Tukey-Kramer test showed that entry speed increased 
significantly for all techniques during the second block. 
Yet no significant difference was identified between the 
techniques. Figure 2 illustrates average entry speed for all 
techniques during all blocks. 

Error Rate 
An ANOVA revealed that there was no significant effect 
of technique on error rate (F2,11 = 0.23, ns). Also, there 
was no significant effect of block (F1,11 = 1.52, ns). Yet a 
significant effect of block was identified when only the 
conventional and pressure techniques were considered 
(F1,11 = 15.38, p < .005). A Tukey-Kramer test showed 
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that the pressure technique significantly reduced error rate 
during the second block. Further investigation revealed 
that about 2% of all characters were blocked during the 
pressure condition. 71% of these were correctly predicted 
as unlikely, erroneous, or unintended input, while the rest 
were false positives. Figure 3 illustrates average error rate 
for all techniques in all blocks. 

 
Figure 3. Average error rate (TER) with standard error 

(SE) during the two blocks for all investigated techniques. 

Discussion 
No significant effect of technique was identified on entry 
speed and error rate. However, we found a significance of 
block, which signifies learning. While text entry speed 
improved similarly for all techniques, accuracy improved 
significantly more with the pressure technique compared 
to the conventional one. On average, errors decreased by 
46% with pressure during the final block, compared to 
23% for the conventional technique. This indicates the 
possibility that with practice or training the performance 
of the pressure technique may increase even more. 

 
Figure 4. The device (Apple iPhone 4) and the application 

used during the final study. 

ISSUES WITH THE FIRST EXPERIMENT 
After careful analysis, several issues were identified with 
the first study setup. First and although insignificant, the 
synthetic tactile feedback may have influenced the 
performance of some users. Second, the simulated pressure 
detection technique detected pressure exclusively based on 
touch-point movement. This may have failed to detect 
pressure for some users. Finally, no visual feedback was 
provided when extra pressure was detected. This may 
have confused some users, as it was hard for them to 
identify whether the system detected pressure or not. This 
also caused delays in text entry, as users had to verify 
their input more frequently to make sure that the system 
recognized their input. Therefore, a second study was 
conducted to further investigate an appropriately modified 
pressure-based technique. 

EXPERIMENT II: EXPERT USERS 
We conducted a second user study to further evaluate the 
new technique with expert users. 

Apparatus 
We used a custom application, developed with the iOS 
SDK, on an Apple iPhone 4 at 640×960 pixel resolution 
and 326 ppi during this user study. Its virtual Qwerty 
keyboard was identical to the iPhone’s default keyboard. 
See Figure 4. The custom keyboard featured the iPhone 
default key enlargement feedback. However, no auditory 
feedback was provided. It logged all interactions with 
timestamps and calculated user performance directly. 

Participants 
Twelve participants, aged from 21 to 29 years, average 
24, participated in the study. Four of them were female and 
all of them were right-handed. They were all experienced 
Apple iPhone or iPad users. That is, they either owned or 
used those devices on a regular basis. 

Procedure 
We used the same procedure as the previous study. Yet 
we made a few changes to address several design issues. 
We removed the synthetic tactile feedback condition to 
avoid a potential confound. We also instructed users to 
hold the device in the portrait position with their 
dominant hand and then to input text using the thumb of 
the same hand. This is motivated by a recent survey, 
which found this to be the most frequently used position 
with mobile users (Hoober, 2013). Also, to assure better 
pressure detection accuracy, we used a hybrid of touch-
point movement and time-based methods to detect extra 
pressure. The system simulated detection of extra pressure 
when users took more than the average time to tap on a 
key and/or when their touch-point moved more than 
usual (Arif and Stuerzlinger, 2013). Based on several 
pilots, we used a threshold of 200 ms for the tap time, and 
a threshold of 0.4 mm for touch centre movement. Finally, 
users were provided with visual feedback on extra pressure 
via the default iPhone key enlargement feature. For the 
blocked (less probable) keys, this feedback was provided 
only when users applied extra pressure to override the 
blockade. This permitted users to quickly identify blocked 
keys without constantly verifying their input. We used a 
counterbalanced within-subjects design: 12 participants ×2 
conditions ×3 blocks × 15 phrases = 1080 phrases in total. 

Results 
We filtered outliers beyond 3σ from the mean, which was 
< 1% of the data. D’Agostino Kurtosis tests revealed that 
the data were normally distributed. Also, a Mauchly’s test 
confirmed that the data’s covariance matrix was circular 
in form. Thus, we used repeated-measures ANOVA. 

Entry Speed 
An ANOVA revealed that there was no significant effect 
of technique on entry speed (F1,11 = 0.48, ns). There was 
also no significant effect of block (F2,22 =0.21, ns). On 
average, entry speeds for regular and pressure were 25.12 
(SE = 0.36) and 24.61 WPM (SE = 0.35), respectively. 
Figure 5 illustrates average entry speed for both techniques 
during the three blocks. 

Error Rate 
An ANOVA revealed that there was no significant effect 
of technique on error rate (F1,11 = 1.45, ns). There was also 
no significant effect of block (F2,22 =1.91, ns). On average, 
TER for regular and pressure were 8 (SE = 0.33) and 7.9% 
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(SE = 0.33), respectively. Figure 6 illustrates average error 
rate for both techniques during the three blocks. Further 
analysis revealed that about 2% of all characters were 
blocked during the pressure condition, 83% of which were 
correctly predicted as unlikely, erroneous, or unintended 
input, while the rest were false positives. 

 
Figure 5. Average entry speed (WPM) with standard error 

(SE) for both techniques during the three blocks. 
Note the scale on vertical axis. 

 
Figure 6. Average error rate (TER) with standard error 

(SE) for both techniques during the three blocks. 
Note the scale on vertical axis. 

Discussion 
As one would expect, average entry speed and accuracy 
were substantially higher with the expert users than with 
novices. However, unlike the first study no indication of 
learning was observed. The overall speed and accuracy 
remained almost the same for both techniques throughout. 
A few factors may have caused this. First, different 
devices were used during the two studies and the virtual 
keyboards were also slightly different. Moreover, we used 
an improved pressure detection simulation method for the 
second study. However and most importantly, in the post-
study interviews for the second study almost all users 
commented that it was hard for them to adapt to the new 
technique as they were already used to the default iOS 
error prevention technique, called key-target resizing. In 
this approach the invisible underlying target areas are 
dynamically resized based on the probabilities associated 
with each character, instead of the visual representation of 
the keys. While our technique blocks the most improbable 
characters, the iOS technique makes the most probable 
ones easier to enter, which is almost an inverse approach. 
This seems to have confused several users as they 
expected the keyboard to act in a certain way. 

CONCLUSION AND FUTURE WORK 
We presented results of two studies that compared a 
virtual keyboard augmented with a new pressure-based 

error prevention technique with the conventional one. The 
first study used novice and the second expert users. 
Results of the first study showed that with practice the 
new technique improves accuracy, while no such 
indication was observed during the second study. Based 
on post-study user feedback, we speculate that this is 
primarily due to users’ previous adaptation to an existing 
error prevention technique. However, as currently we do 
not have sufficient data to verify this assumption, we 
intend to investigate this matter further. We would also 
like to improve the pressure-based technique by providing 
users with visual feedback on which characters are 
predicted as unlikely and how much pressure one needs to 
apply to input those characters.  
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